
Model Predictive Control Toolbox™ 3
Getting Started Guide

Alberto Bemporad
Manfred Morari
N. Lawrence Ricker

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Model Predictive Control Toolbox™ Getting Started Guide

© COPYRIGHT 2005–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
October 2004 First printing New for Version 2.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 2.2.2 (Release 2006a)
September 2006 Online only Revised for Version 2.2.3 (Release 2006b)
March 2007 Online only Revised for Version 2.2.4 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)
March 2008 Online only Revised for Version 2.3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.1 (Release 2009a)
September 2009 Online only Revised for Version 3.1.1 (Release 2009b)
March 2010 Online only Revised for Version 3.2 (Release 2010a)
September 2010 Online only Revised for Version 3.2.1 (Release 2010b)

Contents

Introduction

1
Product Overview . 1-2

Using the Documentation . 1-4
Related Products . 1-5

Bibliography . 1-6

Building Models

2
Overview . 2-2
Plant Model . 2-2
Plant Inputs and Outputs . 2-3

Linear, Time Invariant (LTI) Models 2-4
Transfer Function Format . 2-4
Zero/Pole/Gain Format . 2-5
State-Space Format . 2-5
LTI Object Properties . 2-7
Multiinput-Multioutput (MIMO) Plants 2-11
LTI Model Characteristics . 2-13

System Identification Toolbox Models 2-14
System Identification Model Definition Example 2-14
Converting a System Identification Toolbox Model to an
LTI Object . 2-15

Step-Response Models . 2-17

Using Simulink to Develop LTI Models 2-19
Linearization Using Simulink® Control Design 2-19

v

Linearization Using Simulink Functions 2-24

Bibliography . 2-27

Designing Controllers Using the Design Tool
GUI

3
Introduction . 3-2
Starting the Design Tool . 3-2
Loading a Plant Model . 3-3
Navigation Using the Tree View . 3-6

Linear Simulations . 3-10
Defining Simulation Conditions . 3-10
Running a Simulation . 3-11
Open-Loop Simulations . 3-14

Changing Controller Settings . 3-18
Model and Horizons . 3-18
Weight Tuning . 3-19
Blocking . 3-25
Defining Manipulated Variable Constraints 3-28
Disturbance Modeling and Estimation 3-30

Defining Soft Output Constraints 3-38

Robustness Testing . 3-42
Plant Model Perturbation . 3-42
Simulation Tests . 3-42

Plant Models with Delays . 3-45
Importing the Plant Model . 3-45
Specifying Controller Horizons . 3-46

Nonsquare Plants . 3-50
More Outputs Than Manipulated Variables 3-50

vi Contents

More Manipulated Variables Than Outputs 3-51

Nonlinear Plants . 3-52
MPC Controller Block . 3-52
Initiating the Controller Design . 3-53
Validating the Linearized Model . 3-56
Modifying the Linearized Model . 3-58
Linear Simulation Tests . 3-59
Nonlinear Simulation Tests . 3-61
Modifying the Controller Using the Design Tool 3-63
Exiting the Design Tool . 3-63

Saving Your Work . 3-64
Exporting a Controller . 3-64
Saving a Project . 3-65

Loading Your Saved Work . 3-67

Designing Controllers Using the Command Line

4
Controller Definition . 4-2
Creating a Controller Object . 4-2
Viewing and Altering Controller Properties 4-3

Linear Simulations . 4-7
Using the sim Function . 4-7
Saving Calculated Results . 4-7
Simulation Options . 4-8

Simulations Involving Nonlinear Plants 4-9
Nonlinear CSTR Application . 4-9
Example Code for Successive Linearization 4-10
CSTR Results and Discussion . 4-11

Control Based On Multiple Plant Models 4-14
A Two-Model Plant . 4-14
Designing the Two Controllers . 4-16

vii

Simulating Controller Performance 4-17

Analysis Tools . 4-22
Steady-State Gain Computation . 4-22
Controller Extraction . 4-23

Bibliography . 4-25

Index

viii Contents

1

Introduction

• “Product Overview” on page 1-2

• “Using the Documentation” on page 1-4

• “Bibliography” on page 1-6

1 Introduction

Product Overview
The Model Predictive Control Toolbox™ product is a collection of software
that helps you design, analyze, and implement an advanced industrial
automation algorithm. Like other MATLAB® tools, it provides a convenient
graphical user interface (GUI) as well as a flexible command syntax that
supports customization.

A Model Predictive Control Toolbox controller automates a target system
(the plant) by combining a prediction strategy and a control strategy. An
approximate linear plant model provides the prediction. The control strategy
compares predicted plant signals to a set of objectives, then adjusts available
actuators to achieve the objectives while respecting the plant constraints.
Such constraints can include the physical limits of the actuator, boundaries of
safe operation, and lower limits for product quality.

Model Predictive Control Toolbox constraint-tolerance differentiates it from
other “optimal control” strategies (e.g., the Linear-Quadratic--Gaussian
approach supported in Control System Toolbox™ software). The impetus for
this is industrial experience suggesting that the drive for profitability often
pushes the plant to one or more constraints. The Model Predictive Control
Toolbox controller considers such factors explicitly, allowing it to allocate the
available plant resources intelligently as the system evolves over time.

Model Predictive Control Toolbox software uses the same powerful linear
dynamic modeling tools found in Control System Toolbox software and System
Identification Toolbox™ software. You can use transfer functions, state-space
matrices, or a combination of transfer functions and state-space matrices. You
can also include delays, which are a common feature of industrial plants.

If you do not have a model but can perform experiments, System Identification
Toolbox software can help you to develop a plant model from the data and
then design a controller for this plant using the Model Predictive Control
Toolbox product.

If you use Simulink® to model your plant, the Model Predictive Control
Toolbox product provides a Simulink controller block. For example, you can
linearize a nonlinear Simulink model, use the linearized model to build a
Model Predictive Control Toolbox controller, and evaluate its ability to control
the nonlinear model. If you determine that this controller performs well,

1-2

Product Overview

you can implement this control strategy in a real plant using Real-Time
Workshop® software.

For a list of books on predictive control theory and practice, see “Bibliography”
on page 1-6. In particular, Maciejowski [4] illustrates and extends Version 1.0
of the Model Predictive Control Toolbox software. (The command format used
in [4] is obsolete in Model Predictive Control Toolbox Version 2.0, however.)

1-3

1 Introduction

Using the Documentation
If you have limited experience with MATLAB or Model Predictive
Control Toolbox software, read this guide first. It shows how to:

• Define your plant using Control System Toolbox modeling tools (LTI
transfer function and state space models).

• Derive a linear plant model from a nonlinear Simulink representation.

• Design Model Predictive Control for your plant using mpctool, the
graphical user interface (GUI), or special commands.

• Simulate Model Predictive Control performance using mpctool, Simulink,
or commands.

If you have experience with an earlier Model Predictive Control
Toolbox release, we advise you to read this document to familiarize yourself
with the many new features and the new command syntax (the earlier syntax
is still available, but the underlying code is no longer supported).

If you need more details, see the online documentation. To access it from
the MATLAB prompt, type:

helpdesk

When the help dialog box appears, select Model Predictive Control
Toolbox in the Contents pane. This displays a roadmap with links to the
available documentation components. Briefly, these are:

• Getting Started. The online version of this document.

• MPC Problem Setup. Mathematical details of the Model Predictive Control
Toolbox algorithm and user specifications required for controller design.

• MPC Simulink Library. Describes the Model Predictive Controller Block
and its use within Simulink.

• Case-Study Examples. Example toolbox applications.

• The Design Tool. Reference manual for mpctool, the GUI.

1-4

Using the Documentation

• Functions. Reference manual describing each Model Predictive Control
Toolbox function (used for controller design and simulation in MATLAB
commands and scripts).

• Blocks. Reference manual describing the Model Predictive Control Toolbox
blocks (used for controller design and simulation in Simulink).

• Object Reference. Details of the controller object that represents a complete
controller design.

• Release Notes. Summarizes major features of this release, known
limitations, etc.

Related Products
MathWorks provides other products that complement and enhance the
Model Predictive Control Toolbox functionality. For more information, see
www.mathworks.com.

1-5

http://www.mathworks.com

1 Introduction

Bibliography
[1] Allgower, F., and A. Zheng, Nonlinear Model Predictive Control,
Springer-Verlag, 2000.

[2] Camacho, E. F., and C. Bordons, Model Predictive Control,
Springer-Verlag, 1999.

[3] Kouvaritakis, B., and M. Cannon, Non-Linear Predictive Control: Theory
& Practice, IEE Publishing, 2001.

[4] Maciejowski, J. M., Predictive Control with Constraints, Pearson
Education POD, 2002.

[5] Prett, D., and C. Garcia, Fundamental Process Control, Butterworths,
1988.

[6] Rossiter, J. A., Model-Based Predictive Control: A Practical Approach,
CRC Press, 2003.

1-6

2

Building Models

• “Overview” on page 2-2

• “Linear, Time Invariant (LTI) Models” on page 2-4

• “System Identification Toolbox Models” on page 2-14

• “Using Simulink to Develop LTI Models” on page 2-19

• “Bibliography” on page 2-27

2 Building Models

Overview
This section covers the following topics:

• “Plant Model” on page 2-2

• “Plant Inputs and Outputs” on page 2-3

Plant Model
The plant is the system (process or device) you intend to control. The following
figure shows a schematic example.

Plant with Input and Output Signals

A Model Predictive Control Toolbox design requires a plant model, which
defines the mathematical relationship between the plant inputs and outputs.
The controller uses it to predict plant behavior.

The toolbox software requires the model to be linear, time invariant (LTI).
You can define such a model as follows:

• Create a transfer function, state space, or zero/pole/gain model using
methods provided by the Control System Toolbox software

• Derive it from plant data using, e.g., methods provided by System
Identification Toolbox software

• Derive it by linearizing a Simulink model

This chapter illustrates each of these approaches. Control System Toolbox,
Simulink, and System Identification Toolbox documentation provides
additional examples and details.

2-2

Overview

Plant Inputs and Outputs

Inputs
The plant inputs are the independent variables affecting the plant. As shown
in Plant with Input and Output Signals on page 2-2, there are three types:

Measured disturbances. The controller can’t adjust them, but uses them
for feedforward compensation.

Manipulated variables. The controller adjusts these in order to achieve
its goals.

Unmeasured disturbances. These are independent inputs of which the
controller has no direct knowledge, and for which it must compensate.

Outputs
The plant outputs are the dependent variables (outcomes) you wish to control
or monitor. As shown in Plant with Input and Output Signals on page 2-2,
there are two types:

Measured outputs. The controller uses these to estimate unmeasured
quantities and as feedback on the success of its adjustments.

Unmeasured outputs. The controller estimates these based on available
measurements and the plant model. The controller can also hold unmeasured
outputs at setpoints or within constraint boundaries.

You must specify the input and output types when designing the controller.
See “Input and Output Types” on page 2-9 for more details.

2-3

2 Building Models

Linear, Time Invariant (LTI) Models
Model Predictive Control Toolbox software supports the same LTI model
formats as does Control System Toolbox software. You can use whichever
is most convenient for your application. It’s also easy to convert from one
format to another.

The following sections describe the three model formats and the commands
used to construct them:

• “Transfer Function Format” on page 2-4

• “Zero/Pole/Gain Format” on page 2-5

• “State-Space Format” on page 2-5

• “LTI Object Properties” on page 2-7

• “Multiinput-Multioutput (MIMO) Plants” on page 2-11

• “LTI Model Characteristics” on page 2-13

For more details, see the Control System Toolbox documentation.

Transfer Function Format
A transfer function (TF) relates a particular input/output pair. For example,
if u(t) is a plant input and y(t) is an output, the transfer function relating
them might be:

Y s
U s

G s
s

s s
e s()

()
() .= = +

+ +
−2

102
1 5

This TF consists of a numerator polynomial, s+2, a denominator polynomial,
s2+s+10, and a delay, which is 1.5 time units here. You can define G using
Control System Toolbox tf function:

Gtf1 = tf([1 2], [1 1 10], 'OutputDelay', 1.5)

Control System Toolbox software builds and displays it as follows:

Transfer function:

2-4

Linear, Time Invariant (LTI) Models

s + 2
exp(-1.5*s) * ------------

s^2 + s + 10

Zero/Pole/Gain Format
Like the TF, the zero/pole/gain (ZPK) format relates an input/output pair.
The difference is that the ZPK numerator and denominator polynomials are
factored, as in

G s
s

s s i s i
() .

.
(.)(. .)(. .)

= +
+ + + + −

2 5
0 45

0 3 0 1 0 7 0 1 0 7

(zeros and/or poles are complex numbers in general).

You define the ZPK model by specifying the zero(s), pole(s), and gain as in

Gzpk1 = zpk(-0.45, [-0.3, -0.1+0.7*i, -0.1-0.7*i], 2.5)

State-Space Format

Chemical Reactor Example
The state-space format is convenient if your model is a set of LTI differential
and algebraic equations. For example, consider the following linearized
model of a continuous stirred-tank reactor (CSTR) involving an exothermic
(heat-generating) reaction [9]

dC
dt

a C a T b T b CA
A c Ai

′
= ′ + ′ + ′ + ′11 12 11 12

dT
dt

a C a T b T b CA c Ai
′

= ′ + ′ + ′ + ′21 22 21 22

where CA is the concentration of a key reactant, T is the temperature in the
reactor, Tc is the coolant temperature, CAi is the reactant concentration in the
reactor feed, and aij and bij are constants. See the process schematic in CSTR
Schematic on page 2-6. The primes (e.g., C′A) denote a deviation from the
nominal steady-state condition at which the model has been linearized.

2-5

2 Building Models

CSTR Schematic

Measurement of reactant concentrations is often difficult, if not impossible.
Let us assume that T is a measured output, CA is an unmeasured output, Tc is
a manipulated variable, and CAi is an unmeasured disturbance.

State-Space Format
The model fits the general state-space format

dx
dt

Ax Bu= +

y Cx Du= +

where

x
C
T

u
T

C
y

T
C

A c

Ai A
=

′
′

⎡

⎣
⎢

⎤

⎦
⎥ =

′
′

⎡

⎣
⎢

⎤

⎦
⎥ =

′
′

⎡

⎣
⎢

⎤

⎦
⎥ ,

A
a a
a a

B
b b
b b

C D=
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =11 12

21 22

11 12

21 22

0 1
1 0

0

00
0 0

⎡

⎣
⎢

⎤

⎦
⎥

The following code shows how to define such a model for some specific values
of the aij and bij constants:

A = [-0.0285 -0.0014
-0.0371 -0.1476];

B = [-0.0850 0.0238
0.0802 0.4462];

2-6

Linear, Time Invariant (LTI) Models

C = [0 1
1 0];

D = zeros(2,2);
CSTR = ss(A,B,C,D);

This defines a continuous-time state-space model. If you do not specify a
sampling period, a default sampling value of zero applies. You can also
specify discrete-time state-space models. You can specify delays in both
continuous-time and discrete-time models. For more information, see the
Control System Toolbox documentation.

Note In the CSTR example, the D matrix is zero and the output does not
instantly respond to change in the input. The Model Predictive Control
Toolbox software prohibits direct (instantaneous) feedthrough from a
manipulated variable to an output. For example, the CSTR model could
include direct feedthrough from the unmeasured disturbance, CAi, to either
CA or T but direct feedthrough from Tc to either output would violate this
restriction. If the model had direct feedthrough from Tc, you could have added
a small delay at this input to circumvent the problem.

LTI Object Properties
The ss function in the last line of the above code creates a state space
model, CSTR, which is an LTI object. The tf and zpk commands described in
“Transfer Function Format” on page 2-4 and “Zero/Pole/Gain Format” on page
2-5 also create LTI objects. Such objects contain the model parameters as
well as optional properties.

LTI Properties for the CSTR Example
The following code sets some of the CSTR model’s optional properties:

CSTR.InputName = {'T_c', 'C_A_i'};
CSTR.OutputName = {'T', 'C_A'};
CSTR.StateName = {'C_A', 'T'};
CSTR.InputGroup.MV = 1;
CSTR.InputGroup.UD = 2;
CSTR.OutputGroup.MO = 1;
CSTR.OutputGroup.UO = 2;

2-7

2 Building Models

CSTR

The first three lines specify labels for the input, output and state variables.
The next four specify the signal type for each input and output. The
designations MV, UD, MO, and UO mean manipulated variable, unmeasured
disturbance, measured output, and unmeasured output. (See “Plant Inputs
and Outputs” on page 2-3 for definitions.) For example, the code specifies
that input 2 of model CSTR is an unmeasured disturbance. The last line
causes the LTI object to be displayed, generating the following lines in the
MATLAB Command Window:

a =
C_A T

C_A -0.0285 -0.0014
T -0.0371 -0.1476

b =
T_c C_Ai

C_A -0.085 0.0238
T 0.0802 0.4462

c =
C_A T

T 0 1
C_A 1 0

d =
T_c C_Ai

T 0 0
C_A 0 0

Input groups:
Name Channels
MV 1
UD 2

Output groups:
Name Channels

2-8

Linear, Time Invariant (LTI) Models

MO 1
UO 2

Continuous-time model

Input and Output Names
The optional InputName and OutputName properties affect the model displays,
as in the above example. The toolbox also uses the InputName and OutputName
properties to label plots and tables. In that context, the underscore character
causes the next character to be displayed as a subscript.

Input and Output Types

General Case. As mentioned in “Overview” on page 2-2, Model Predictive
Control Toolbox software supports three input types and two output types.
In a Model Predictive Control Toolbox design, designation of the input and
output types determines the controller dimensions and has other important
consequences.

For example, suppose your plant structure were as follows.

Plant Inputs Plant Outputs

Two manipulated variables (MVs) Three measured outputs (MOs)

One measured disturbance (MD) Two unmeasured outputs (UOs)

Two unmeasured disturbances (UDs)

The resulting controller would have four inputs (the three MOs and the MD)
and two outputs (the MVs). It would include feedforward compensation for the
measured disturbance, and would assume that you wanted the unmeasured
disturbances and outputs to be included as part of the regulator design.

If you didn’t want a particular signal to be treated as one of the above types,
you could do one of the following:

• Eliminate the signal before using the model in controller design.

2-9

2 Building Models

• For an output, designate it as unmeasured, then set its weight to zero
(see “Output Weights” on page 3-21).

• For an input, designate it as an unmeasured disturbance, then define a
custom state estimator that ignores the input (see “Disturbance Modeling
and Estimation” on page 3-30).

Note By default, the toolbox assumes that unspecified plant inputs are
manipulated variables, and unspecified outputs are measured. Thus, if you
didn’t specify signal types in the above example, the controller would have
four inputs (assuming all plant outputs were measured) and five outputs
(assuming all plant inputs were manipulated variables).

Example. For model CSTR, default Model Predictive Control Toolbox
assumptions are incorrect. You must set its InputGroup and OutputGroup
properties, as illustrated in the above code, or modify the default settings
when you load the model into the design tool.

The toolbox provides a “helper” function called setmpcsignals to make type
definition more convenient. For example

CSTR = setmpcsignals(CSTR, 'UD', 2, 'UO', 2);

sets InputGroup and OutputGroup to the same values as in the previous
example. The CSTR display would then include the following lines:

Input groups:
Name Channels

Unmeasured 2
Manipulated 1

Output groups:
Name Channels

Unmeasured 2
Measured 1

2-10

Linear, Time Invariant (LTI) Models

Notice that setmpcsignals sets unspecified inputs to Manipulated and
unspecified outputs to Measured.

See the Control System Toolbox documentation for additional information on
LTI object properties.

Multiinput-Multioutput (MIMO) Plants
Most Model Predictive Control Toolbox applications involve plants having
multiple inputs and outputs. Model CSTR described in “State-Space Format”
on page 2-5 is a MIMO plant, and the state space format extends naturally
from single-input single-output (SISO) to MIMO plants.

You can also use the tf and zpk functions to build a MIMO plant model. For
example, consider the following model of a distillation column [11], which has
been used in many advanced control studies:

y
y

e
s

e
s

e
s

s s s

1

2

3 8 112 8
16 7 1

18 9
21 0 1

3 8
14 9 1

6

⎡

⎣
⎢

⎤

⎦
⎥ = +

−
+ +

− − −.
.

.
.

.
.

.

..
.

.
.

.
.

.6
10 9 1

19 4
14 4 1

4 9
13 2 1

7 3 3 4e
s

e
s

e
s

s s s− − −

+
−

+ +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

u
u
u

1

2

3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Outputs y1 and y2 represent measured product purities. The control objective
is to hold each at specified setpoints. To do so, the controller manipulates
inputs u1 and u2, the flow rates of reflux and reboiler steam, respectively.
Input u3 is a measured feed flow rate disturbance.

The model consists of six transfer functions, one for each input/output pair.
Each transfer function is the first-order-plus-delay form often used by process
control engineers.

The following code shows how to define the distillation column model for
use in the toolbox:

g11 = tf(12.8, [16.7 1], 'IOdelay', 1.0);
g12 = tf(-18.9, [21.0 1], 'IOdelay', 3.0);
g13 = tf(3.8, [14.9 1], 'IOdelay', 8.1);
g21 = tf(6.6, [10.9 1], 'IOdelay', 7.0);
g22 = tf(-19.4, [14.4 1], 'IOdelay', 3.0);

2-11

2 Building Models

g23 = tf(4.9, [13.2 1], 'IOdelay', 3.4);
DC = [g11 g12 g13

g21 g22 g23];
DC.InputName = {'Reflux Rate', 'Steam Rate', 'Feed Rate'};
DC.OutputName = {'Distillate Purity', 'Bottoms Purity'};
DC = setmpcsignals(DC, 'MD', 3)

The code defines the individual transfer functions, and then forms a matrix
in which each row contains the transfer functions for a particular output,
and each column corresponds to a particular input. The code also sets the
signal names and designates the third input as a measured disturbance. The
resulting LTI object display is as follows:

Transfer function from input "Reflux Rate" to output...
12.8

Distillate Purity: exp(-1*s) * ----------
16.7 s + 1

6.6
Bottoms Purity: exp(-7*s) * ----------

10.9 s + 1

Transfer function from input "Steam Rate" to output...
-18.9

Distillate Purity: exp(-3*s) * --------
21 s + 1

-19.4
Bottoms Purity: exp(-3*s) * ----------

14.4 s + 1

Transfer function from input "Feed Rate" to output...
3.8

Distillate Purity: exp(-8.1*s) * ----------
14.9 s + 1

4.9
Bottoms Purity: exp(-3.4*s) * ----------

13.2 s + 1
Input groups:

2-12

Linear, Time Invariant (LTI) Models

Name Channels
Measured 3

Manipulated 1,2

Output groups:
Name Channels

Measured 1,2

LTI Model Characteristics
Control System Toolbox software provides functions for analyzing LTI models.
Some of the more commonly used are listed below. Type the example code at
the MATLAB prompt to see how they work for the CSTR example.

Example Intended Result

dcgain(CSTR) Calculate gain matrix for the CSTR
model’s input/output pairs.

impulse(CSTR) Graph CSTR model’s unit-impulse
response.

ltiview(CSTR) Open the LTI Viewer with the CSTR
model loaded. You can then display
model characteristics by making
menu selections.

pole(CSTR) Calculate CSTR model’s poles (to
check stability, etc.).

step(CSTR) Graph CSTR model’s unit-step
response.

zero(CSTR) Compute CSTR model’s transmission
zeros.

2-13

2 Building Models

System Identification Toolbox Models
System Identification Toolbox software for MATLAB generates LTI models
based on plant input/output data. This section explains how to use such
models in Model Predictive Control Toolbox:

• “System Identification Model Definition Example” on page 2-14

• “Converting a System Identification Toolbox Model to an LTI Object” on
page 2-15

• “Step-Response Models” on page 2-17

Note The System Identification Toolbox product is optional. To determine
whether your installation includes it, type ver at the MATLAB prompt, and
look for “System Identification Toolbox” in the list of installed products.

System Identification Model Definition Example
To use System Identification Toolbox software, you first create an iddata
object containing measured values of your plant input and output signals.
The following example uses the System Identification Toolbox tutorial data
set, a temperature-control application. Load the data as follows:

load dryer2

This creates vectors u2 and y2 in your workspace. Vector u2 is a sequence of
1000 plant input values (electrical power), and y2 is the corresponding output
sequence (1000 temperature values). The sampling period is 0.08 second.

Create an iddata object called dry as follows:

dry = iddata(y2,u2,0.08);

Once the data has been loaded, use the System Identification Toolbox GUI
or commands to determine a model that best fits the data. For example, the
commands

dry.InputName = 'Power';
dry.OutputName = 'Temperature';

2-14

System Identification Toolbox™ Models

ze = detrend(dry(1:300));
m1 = pem(ze);

create a System Identification Toolbox model called m1 (see the System
Identification Toolbox documentation for a detailed explanation). If you type

whos m1

at the MATLAB prompt, the displayed result is:

Name Size Bytes Class

m1 4-D 22470 idss object

Notice that m1 is an idss object, one of seven possible System Identification
Toolbox model types (idgrey, idarx, idpoly, idproc, idss, idmodel, and
idfrd). The pem function settings govern the type of model generated.

Like other System Identification Toolbox objects, m1 defines a model structure
and adjustable parameter values that best fit the data. It also contains
toolbox-specific information, such as the algorithm used to estimate the
parameters.

Converting a System Identification Toolbox Model
to an LTI Object
After you’ve created a System Identification Toolbox model based on your
data, you must convert it to a standard LTI object before using it in the Model
Predictive Control Toolbox software. System Identification Toolbox software
provides a special conversion function (ss).

Note An exception is the mpc function described in “Controller Definition” on
page 4-2, which can use System Identification Toolbox models directly.

Creating an LTI State-Space Model
Use the ss function to convert a System Identification Toolbox model object
(except the idfrd type) to a standard Control System Toolbox ss (state-space)

2-15

2 Building Models

object, which is the form used internally by the Model Predictive Control
Toolbox software. For example,

m1ss = ss(m1)

converts m1, a System Identification Toolbox object, to m1ss, an LTI ss object,
and displays the following:

a =
x1 x2 x3

x1 0.9492 -0.2127 0.03679
x2 0.2599 0.6523 0.2342
x3 -0.04822 -0.6639 0.1393

b =
Power v@Temperatur

x1 -0.0005008 0.002613
x2 -0.01335 -0.0002421
x3 -0.06729 -0.004463

c =
x1 x2 x3

Temperature 14.09 -0.108 -0.08164

d =
Power v@Temperatur

Temperature 0 0.03968

Input groups:
Name Channels

Measured 1
Noise 2

Sampling time: 0.08
Discrete-time model

Here m1ss is a third-order, discrete-time, state-space model with a sampling
time of 0.08, one output (Temperature), and two inputs (Power and
v@Temperatur).

2-16

System Identification Toolbox™ Models

Noise Inputs
System Identification Toolbox software automatically creates a noise input
for each output to model the impact of unmeasured disturbances and
measurement noise. In the above example, there is one output (Temperature).
Its associated noise input is v@Temperatur.

System Identification Toolbox software designates the noise inputs using
the LTI model’s InputGroup property. In the above example, channel 2
(v@Temperatur) is classified as Noise, while channel 1 (Power) is Measured.

When you use such a model in Model Predictive Control Toolbox software,
Noise inputs will be treated as unmeasured disturbances, and Measured
inputs will be treated as manipulated variables. (See “Overview” on page
2-2 for discussion of input types.) If these defaults are inappropriate, you
must correct them prior to using the model in a design. If you are using the
design tool, “Loading a Plant Model” on page 3-3 shows how to specify signal
types. When using commands, you need to set the models InputGroup and
OutputGroup properties, as illustrated in “LTI Object Properties” on page 2-7.

Note As discussed in “Disturbance Modeling and Estimation” on page 3-30,
unmeasured disturbance inputs influence the default controller design. A
System Identification Toolbox model of its Noise inputs might fit the given
data, but another experiment might yield a very different noise model. If a
controller designed using such a model seems to work well during setpoint
changes but is slow to eliminate disturbances or exhibits steady-state error,
try modifying the Model Predictive Control Toolbox disturbance modeling
settings.

Step-Response Models
Early predictive control implementations used finite step-response or finite
impulse-response models, often called nonparametric LTI models (see [6] for
example). Such models are easy to determine from plant data ([3], [7]) and
they have intuitive appeal.

System Identification Toolbox software includes tools for nonparametric
model identification. See the System Identification Toolbox documentation for
details.

2-17

2 Building Models

For example, given the iddata object ze (defined in “System Identification
Model Definition Example” on page 2-14), you could type:

m2 = step(ze);

This identifies a finite step-response model, m2, which is a System
Identification Toolbox idarx object. Then typing

step(m2)

would display its unit-step response.

You could convert m2 to an LTI object for use in the Model Predictive Control
Toolbox design (see “Creating an LTI State-Space Model” on page 2-15). The
disadvantage is that the model will be high-order, especially if your plant is
MIMO. For example, converting m2 generates an ss object of order 69.

High-order models can degrade certain Model Predictive Control Toolbox
operations, such as estimator design. As is the case with most recent
predictive control implementations (see [5] for example), Model Predictive
Control Toolbox algorithms work best with a low-order parametric model.
For example, reference [10] describes a systematic approach that identifies
a step-response model as an intermediate step. The System Identification
Toolbox documentation also advocates this approach.

2-18

Using Simulink® to Develop LTI Models

Using Simulink to Develop LTI Models
LTI and System Identification Toolbox models discussed in the previous
sections are linear dynamic models. Most real systems are nonlinear. If you’d
like to simulate Model Predictive Control Toolbox control of a nonlinear
system, you must model the plant in Simulink.

Although a Model Predictive Control Toolbox controller can regulate a
nonlinear plant, the model used within the controller must be linear. In
other words, the controller employs a linear approximation of the nonlinear
plant. The accuracy of this approximation is a key issue affecting controller
performance.

This raises the question: how to obtain the approximation? The usual
approach is to linearize the nonlinear plant at a specified operating point. The
Simulink environment provides two ways to accomplish this:

• “Linearization Using Simulink® Control Design” on page 2-19

• “Linearization Using Simulink Functions” on page 2-24

Linearization Using Simulink Control Design
Simulink® Control Design™ software is an optional product that supports
model linearization. To determine whether or not your license includes it,
type ver at the MATLAB prompt, and note whether or not “Simulink Control
Design” appears in the resulting product list.

The Simulink Control Design documentation includes extensive background
on linearization and several examples. You can linearize a Simulink model of
the plant alone, or a model that includes both the plant and its controller.

Simulink Model of a Nonlinear Chemical Reactor on page 2-20 is a Simulink
model of a continuous stirred-tank reactor (CSTR). It is similar to the one in
CSTR Schematic on page 2-6, except that here the model is nonlinear and
includes an additional input: the feed temperature. This code is stored in
the Model Predictive Control Toolbox demo folder. You can open it at the
MATLAB prompt by typing:

CSTR_OL

2-19

2 Building Models

As shown in Simulink Model of a Nonlinear Chemical Reactor on page 2-20,
the three inputs are being held at constant values: 10 kmol/m3 for the feed
concentration, and 298.15 K for the feed and coolant temperatures. Like the
model of the CSTR Schematic on page 2-6, there are two state variables:
the reactor temperature and the reactant concentration leaving the reactor.
The Simulink model defines their initial conditions to be 311.27 K and 8.57
kmol/m3, which are at steady state (or equlibrium condition) for the given
inputs. (If you run the simulation, the outputs will stay at their initial
conditions.)

Simulink Model of a Nonlinear Chemical Reactor

Note “Nonlinear Plants” on page 3-52 shows how to linearize this model
when a Model Predictive Control block is included.

To linearize Simulink Model of a Nonlinear Chemical Reactor on page 2-20,
first designate the input and output signals to be retained in the linear
approximation. In general, you would choose signals that will be connected
to a controller. In Simulink Model of a Nonlinear Chemical Reactor on page
2-20, all the signals have been selected by adding linearization points, i.e.,
by right-clicking a signal and selecting either Input Point or Output Point
from the Linearization Points submenu.

Next, create a linearization project within the Simulink Control and
Estimation Tools Manager. From the Tools menu of the Simulink model,
select Control Design/Linear Analysis.

CSTR Model Linearization Using Simulink Control Design on page 2-21
shows the resulting window for the CSTR example. The tool automatically

2-20

Using Simulink® to Develop LTI Models

defines the Default Operating Point entry, in this case the initial
steady-state condition.

CSTR Model Linearization Using Simulink Control Design

Linearization at a Specified Operating Point
To calculate the linear approximation at a particular operating point, select
Linearization Task in the tree (highlighting it as shown in CSTR Model
Linearization Using Simulink Control Design on page 2-21), select the desired
operating point on the Operating Points tab (if more than one have been
defined), and then click the Linearize Model button.

CSTR Model Linearization Using Simulink Control Design on page 2-21
shows the tool’s state after a linearized model has been created at the default
operating point. This model appears in the tree as the icon labeled Model.
The tree has been expanded to show its associated operating point, which in
this case is labeled Default Operating Point. You can select the model
in the tree, right-click, and then export it to MATLAB, making it available
for use in another tool.

Determining a New Operating Point
You are likely to need to modify a nonlinear model’s operating point. For
example, the above CSTR model has a poor reactant conversion. The feed

2-21

2 Building Models

contains 10 kmol/m3, and the residual is 8.57 kmol/m3, so only 1.43 has
reacted (14.3% conversion).

Suppose that you’d like to react 80% (i.e., a residual concentration of 2
kmol/m3). To increase the conversion you need to increase the CSTR
temperature, but how much? Also, to change the CSTR temperature you need
to change the coolant temperature, but how much?

One approach would be to change the coolant temperature, run a simulation
of sufficient duration to reach a new steady state, check the final residual
concentration, and repeat until you achieve the desired 2.0 kmol/m3 residual.
This is tedious and essentially impossible in a more complex situation where
you are trying to match several targets simultaneously.

Simulink Control Design software can search for a new steady state operating
point that achieves the desired conversion. First, you must modify the model
so Simulink can change the coolant temperature. One way is to represent
the coolant temperature with an Inport block, as shown below (compare to
Simulink Model of a Nonlinear Chemical Reactor on page 2-20, which uses a
Constant block.

Save this modified model under a new name. Then from the Tools menu,
select Control Design/Linear Analysis as before. If the Control and
Estimation Tools Manager window containing CSTR_OL is still open (as shown
in CSTR Model Linearization Using Simulink Control Design on page 2-21), a
new linearization project will be inserted. Otherwise, the window will open
with CSTR_OL as a new project.

It will contain a default operating point. This is as before except that the
coolant temperature appears as an input and defaults to zero. To modify this,
select Operating Points in the tree, and select the Compute Operating

2-22

Using Simulink® to Develop LTI Models

Points tab. On this pane, click the States tab and set the check boxes as
shown below.

Also set the desired value of the second state (the residual concentration) to
2, as shown. You are asking for a new operating point in which one state
is specified (known) and both are at steady state. The reactor temperature
value (311.267) is an initial guess. The tool will search for a value that
satisfies all the specifications.

Next, click the Inputs tab and verify that the coolant temperature input has
its Known check box unselected as shown below.

The value is an initial guess that will be changed. You can set it to 298, as
shown above, to help the tool converge its trial-and-error calculations. (The
default guess of 0 should also work here, but it is good practice to supply a
problem-specific guess to aid convergence.)

2-23

2 Building Models

Finally, click the Compute Operating Point button. A calculation progress
pane shows the specification error at each iteration. When it’s finished, you
should see the line, “Operating point specifications were successfully met”
and a new operating point should appear in the tree. Click this and observe
that the required reactor temperature is 373.13 K, and the required coolant
temperature is 305.20 K.

Let’s calculate a new linearized model at this condition, comparing it to that
obtained at the original point. Suppose you exported the original model as
Model1, and the other as Model2. The following command would compare
their step responses:

step(Model1, Model2)

You should see some significant quantitative and qualitative differences,
especially in the response to a change in feed concentration. At the original
low-conversion state, increasing the feed concentration increases both the
reactor temperature and the residual concentration. At high conversion,
however, the reaction is more sensitive to temperature changes. Increasing
the feed concentration causes an initial rise in the residual concentration, but
the increased temperature accelerates the reaction rate and the residual
concentration goes below its initial value. Thus, if one were trying to control
conversion by adjusting the feed concentration, a model-based controller
designed for low conversion would be certain to fail at high conversion.

Linearization Using Simulink Functions
Another approach is to linearize the model using standard Simulink
functions. This is more restrictive: you cannot perform open loop analysis of
the Simulink model, and the signals to be retained in the linearized model
must be connected to an inport or outport block. On the other hand, Simulink
Control Design software is not needed.

The following diagram shows a modification of Simulink Model of a Nonlinear
Chemical Reactor on page 2-20 with three inport blocks designating the
input signals (on the left side of the model) and two outports designating the
outputs (on the right).

2-24

Using Simulink® to Develop LTI Models

Suppose this model were named CSTR_INOUT. The linmod command linearizes
it as follows:

[a,b,c,d]=linmod('CSTR_INOUT')

a =

-0.2505 1.9897
-0.0880 -1.1669

b =

0 1.0000 0.3000
1.0000 0 0

c =

1.0000 0
0 1.0000

d =

0 0 0
0 0 0

By default, linmod uses the initial conditions defined in the model as the
operating point. Options allow you to specify an operating point. The
command outputs are the standard state-space matrices defining an LTI
model. You can use these to create an LTI model as follows:

cstr = ss(a,b,c,d)

2-25

2 Building Models

2-26

Bibliography

Bibliography
[1] Allgower, F., and A. Zheng, Nonlinear Model Predictive Control,
Springer-Verlag, 2000.

[2] Camacho, E. F., and C. Bordons, Model Predictive Control,
Springer-Verlag, 1999.

[3] Cutler, C., and F. Yocum, “Experience with the DMC inverse for
identification,” Chemical Process Control — CPC IV (Y. Arkun and W. H. Ray,
eds.), CACHE, 1991.

[4] Kouvaritakis, B., and M. Cannon, Non-Linear Predictive Control: Theory
& Practice, IEE Publishing, 2001.

[5] Maciejowski, J. M., Predictive Control with Constraints, Pearson
Education POD, 2002.

[6] Prett, D., and C. Garcia, Fundamental Process Control, Butterworths,
1988.

[7] Ricker, N. L., “The use of bias least-squares estimators for parameters in
discrete-time pulse response models,” Ind. Eng. Chem. Res., Vol. 27, pp.
343, 1988.

[8] Rossiter, J. A., Model-Based Predictive Control: A Practical Approach,
CRC Press, 2003.

[9] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp, Process Dynamics and
Control, 2nd Edition, Wiley, 2004, pp. 34–36 and 94–95.

[10] Wang, L., P. Gawthrop, C. Chessari, T. Podsiadly, and A. Giles, “Indirect
approach to continuous time system identification of food extruder,” J. Process
Control, Vol. 14, Number 6, pp. 603–615, 2004.

[11] Wood, R. K., and M. W. Berry, Chem. Eng. Sci., Vol. 28, pp. 1707, 1973.

2-27

2 Building Models

2-28

3

Designing Controllers
Using the Design Tool GUI

• “Introduction” on page 3-2

• “Linear Simulations” on page 3-10

• “Changing Controller Settings” on page 3-18

• “Defining Soft Output Constraints” on page 3-38

• “Robustness Testing” on page 3-42

• “Plant Models with Delays” on page 3-45

• “Nonsquare Plants” on page 3-50

• “Nonlinear Plants” on page 3-52

• “Saving Your Work” on page 3-64

• “Loading Your Saved Work” on page 3-67

3 Designing Controllers Using the Design Tool GUI

Introduction
The Model Predictive Control Toolbox design tool is a graphical user interface
for controller design. This GUI is part of the Control and Estimation Tools
Manager GUI. To learn about using the Control and Estimation Tools
Manager for linearization, see “Linearization Using Simulink® Control
Design” on page 2-19.

This section covers the following topics:

• “Starting the Design Tool” on page 3-2

• “Loading a Plant Model” on page 3-3

• “Signal Property Specifications” on page 3-5

Starting the Design Tool
Start the design tool by typing the MATLAB command

mpctool

The Control and Estimation Tools Manager window appears, as shown
below. By default, it contains a Model Predictive Control Toolbox task called
MPCdesign (listed in the tree view on the left side of the window), which is
selected, causing the view shown on the right to appear.

3-2

Introduction

Model Predictive Control Toolbox Design Tool Initial View

Loading a Plant Model
The first step in the design is to load a plant model. Its dimensions and signal
characteristics set the context for the remaining steps. You can either load
the model directly, as described in this section, or indirectly by importing a
controller or a saved design (see “Loading Your Saved Work” on page 3-67).

The following example uses the CSTR model described in “State-Space Format”
on page 2-5. Verify that the LTI object CSTR is in your MATLAB workspace
(if necessary, create the model as explained in “State-Space Format” on page
2-5, and set its label and signal type properties as explained in “LTI Object
Properties” on page 2-7).

3-3

3 Designing Controllers Using the Design Tool GUI

Plant Model Importer Dialog Box
Click the Import Plant button in the design tool’s initial view (see Model
Predictive Control Toolbox Design Tool Initial View on page 3-3). The Plant
Model Importer dialog box appears.

Plant Model Importer Dialog Box

The Import from MATLAB workspace option button should be selected
by default, as shown. The Items in your workspace table lists your LTI
models. If CSTR doesn’t appear, define it as discussed in “State-Space Format”
on page 2-5, then reopen this dialog box.

After CSTR appears, select it. The Properties list displays the number of
inputs and outputs, their names and signal types, etc.

Click the Import button. This loads CSTR into the design tool. Then click the
Close button (otherwise the dialog box remains visible in case you want to
import another model). The design tool should appear as in Model Predictive
Control Toolbox Design Tool’s Signal Definition View on page 3-5.

3-4

Introduction

Model Predictive Control Toolbox Design Tool’s Signal Definition View

Signal Property Specifications
The figure’s graphical display indicates that you’ve imported a plant model by
showing the number of inputs and outputs, and the number in each subclass:
measured disturbance, manipulated variables, etc.). Also, the tables labeled
Input signal properties and Output signal properties fill with data:

• The Name entries are from the CSTR model’s InputName and OutputName
properties (the design tool assigns defaults if necessary). You can edit
these at any time.

• The Type entries are from the CSTR model’s InputGroup and OutputGroup
properties. (The design tool defaults all unspecified inputs to manipulated
variables and all unspecified outputs to measured.)

3-5

3 Designing Controllers Using the Design Tool GUI

Note Once you leave this view, if you subsequently change a signal type,
you will have to restart the design. Be sure the signal types are correct
at the beginning.

• The Description and Unit entries are optional. You can enter the values
shown in Model Predictive Control Toolbox Design Tool’s Signal Definition
View on page 3-5 manually. As you will see, the design tool uses them to
label plots and other tables.

• The Nominal entries are initial conditions for simulations. The design
tool default is 0.0.

Navigation Using the Tree View
The tree in the left-hand frame of Model Predictive Control Toolbox Design
Tool’s Signal Definition View on page 3-5 shows that the defaultMPCdesign
node (see Model Predictive Control Toolbox Design Tool Initial View on page
3-3) has been renamed CSTRcontrol by clicking the name, waiting for the
usual edit box to appear, typing the new name, and pressing Enter to finalize
the choice.

Model Predictive Control Toolbox Design Tool’s Signal Definition View on
page 3-5 also shows three new nodes below CSTRcontrol. These activate
once you’ve imported a plant model (or controller).

In general, clicking a node displays a view supporting a particular design
activity.

Project View (Signal Properties Tables)
For example, clicking the project node (CSTRcontrol in Model Predictive
Control Toolbox Design Tool’s Signal Definition View on page 3-5) allows you
to review and edit the signal properties tables.

Listing Your Plant Models
Select the Plant models node to list the plant models you’ve imported, as
shown in Plant Models View with CSTR Model Selected on page 3-7. (Each
model name is editable.) The Model details section displays properties of

3-6

Introduction

the selected model. There is also a space to enter notes describing the model’s
special features. Buttons allow you to import a new model or delete one you
no longer need.

Plant Models View with CSTR Model Selected

Viewing Your Controllers
Next, select Controllers. The view shown in Controllers View on page
3-8 appears. A + sign to the left of Controllers indicates that it contains
subnodes. You can click a + sign to expand the tree (as shown in Controllers
View on page 3-8, where the + sign has changed to a – sign).

3-7

3 Designing Controllers Using the Design Tool GUI

Controllers View

The table at the top of Controllers View on page 3-8 lists all the controllers
you’ve defined. The design tool automatically creates a controller containing
Model Predictive Control Toolbox defaults, naming it MPC1. It is a subnode
of Controllers.

Note If you define additional controllers, they will appear here. For example,
you might want to test several options, saving each as a separate controller,
making it easy to switch from one to another during testing.

The table Controllers defined in this project allows you to edit the
controller name and gives you quick access to three important design

3-8

Introduction

parameters: Plant Model, Control Interval, and Prediction Horizon. All
are editable, but leave them at their default values for this example.

The buttons shown in Controllers View on page 3-8 let you do the following:

• Import a controller designed previously and stored either in your workspace
or in a MAT-file.

• Export the selected controller to your workspace.

• Create a new controller initialized to Model Predictive Control Toolbox
defaults.

• Copy the selected controller, creating a duplicate you can modify.

• Delete the selected controller.

You can also right-click the Controllers node to access menu options New,
Import, and Export, or one of its subnodes to access menu options Copy,
Rename, Export, and Delete.

Select the MPC1 node to display Model Predictive Control Toolbox default
controller settings. (“Changing Controller Settings” on page 3-18 covers this
view in detail).

Viewing Simulation Scenarios
A scenario is a set of conditions defining a simulation. The design tool creates
a default scenario and names it Scenario1. To view it, click the + symbol
next to the Scenarios node, and select the Scenario1 subnode. You should
see a view like that shown in CSTR Temperature Setpoint Change Scenario
on page 3-11.

Whenever you select the Scenarios node, you see a table summarizing your
current scenarios (not shown). Its function is similar to the Controllers view
described previously.

3-9

3 Designing Controllers Using the Design Tool GUI

Linear Simulations
You will usually want to test your controller in simulations. The Model
Predictive Control Toolbox design tool makes it easy to run closed-loop
simulations involving a Model Predictive Control Toolbox controller and an
LTI plant model. This plant can differ from that used in the controller design,
allowing you to test your controller’s sensitivity to prediction errors (see
“Robustness Testing” on page 3-42).

This section covers the following topics:

• “Defining Simulation Conditions” on page 3-10

• “Running a Simulation” on page 3-11

• “Open-Loop Simulations” on page 3-14

Defining Simulation Conditions
To define simulation conditions, select an existing scenario node or create a
new one, and then edit its tabular fields to define your conditions.

CSTR Temperature Setpoint Change Scenario on page 3-11 shows the result
of renaming the default Scenario1 node to T Setpoint and editing its default
conditions. The required editing steps are as follows:

• Increase Duration from 10 to 30.

• Locate the tabular data defining the reactor temperature setpoint (first row
of the upper table in CSTR Temperature Setpoint Change Scenario on
page 3-11).

- Click the Type table cell and select Step from the list of choices.

- Change Size from 1.0 to 2.

- Change Time from 1.0 to 5.

3-10

Linear Simulations

Note The Control Interval is a property of the controller being used
(MPC1 in this case). To change it, select the controller node in the tree,
and then edit the value on theModel and Horizons tab (see “Model and
Horizons” on page 3-18). Such a change would apply to all simulations
involving that controller.

CSTR Temperature Setpoint Change Scenario

Running a Simulation
To run a simulation, do one of the following:

• Select the scenario you want to run, and click its Simulate button (see the
bottom of CSTR Temperature Setpoint Change Scenario on page 3-11).

3-11

3 Designing Controllers Using the Design Tool GUI

• Click the toolbar’s Simulation button, which is the triangular icon shown
on the top left of CSTR Temperature Setpoint Change Scenario on page
3-11.

The toolbar method runs the current scenario, i.e., the one most recently
selected or modified.

Try running the T Setpoint scenario. This should generate the two response
plot windows shown in Plant Outputs for T Setpoint Scenario with Added
Data Markers on page 3-12 and Plant Inputs for the T Setpoint Scenario
on page 3-13.

Plant Outputs for T Setpoint Scenario with Added Data Markers

3-12

Linear Simulations

Plant Inputs for the T Setpoint Scenario

Plant Outputs for T Setpoint Scenario with Added Data Markers on page 3-12
shows that the reactor temperature setpoint increases suddenly by 2 degrees
at t = 5, as you specified when defining the scenario in “Defining Simulation
Conditions” on page 3-10. Unfortunately, the temperature does not track the
setpoint very well, and there is a persistent error of about 1.6 degrees at the
end of the simulation.

Also, the controller requests a sudden jump in the coolant temperature
(see the upper graph in Plant Inputs for the T Setpoint Scenario on page
3-13), which might be difficult to deliver in practice. (The lower graph in
Plant Inputs for the T Setpoint Scenario on page 3-13 shows that the feed
concentration, CAi, remains constant, as specified in the scenario.)

See “Changing Controller Settings” on page 3-18 for ways to overcome these
deficiencies.

3-13

3 Designing Controllers Using the Design Tool GUI

Note Plant Outputs for T Setpoint Scenario with Added Data Markers on
page 3-12 has data markers. To add these, left-click the curve to create the
data marker. Drag a marker to relocate it. Left-click in a graph’s white space
to erase its markers. For more information on data markers, see the Control
System Toolbox documentation.

Open-Loop Simulations
By default, scenarios are closed loop, i.e., an active controller adjusts the
manipulated variables entering your plant based on feedback from the plant
outputs. You can also run open-loop simulations that test the plant model
without feedback control.

For example, you might want to check your plant model’s response to a
particular input without opening another tool. You might also want to
display unmeasured disturbance signals before using them in a closed-loop
simulation.

To see how this works, create a new scenario by right-clicking the T Setpoint
node in the tree, and selecting Copy Scenario in the resulting menu.
Rename the copy OpenLoop.

Select OpenLoop in the tree. On its scenario view, change Duration to 100,
and turn off (clear) Close loops.

Open-loop simulations ignore the Setpoints table settings, so there’s no need
to modify them.

If CSTR had a measured disturbance input, the pane would contain another
table allowing you to specify it.

For this example, focus on the Unmeasured disturbances table. Configure
it as shown below.

3-14

Linear Simulations

The C_A_i input’s nominal value is 0.0 (see Model Predictive Control Toolbox
Design Tool’s Signal Definition View on page 3-5), so the above models a
sudden increase to 1 at the beginning of the simulation. The following is an
equivalent setup using the Step type.

Using one of these, simulate the scenario (click its Simulate button). The
output response plot should be as shown below.

This is the CSTR model’s open-loop response to a unit step in the CAi
disturbance input.

You could also set up the table as shown below.

3-15

3 Designing Controllers Using the Design Tool GUI

This simulation would display the open-loop response to a unit step in the Tc
manipulated variable input (try it).

Finally, set it up as follows.

This adds a pulse to the T output. The pulse begins at time t = 10, and lasts
20 time units. Its height is 0.95 degrees.

Run the simulation. The output response plot displays the pulse (see
Response Plot Showing Open-Loop Pulse Disturbance on page 3-16). In this
case, the T output’s nominal value is zero, so you only see the pulse. (If the T
output had a nonzero nominal value, the pulse would add to that.)

Response Plot Showing Open-Loop Pulse Disturbance

If you were to run a closed-loop simulation with this same T disturbance, the
controller would attempt to hold T at its setpoint, and the result would differ

3-16

Linear Simulations

from that shown in Response Plot Showing Open-Loop Pulse Disturbance
on page 3-16.

3-17

3 Designing Controllers Using the Design Tool GUI

Changing Controller Settings
The simulations shown in Plant Outputs for T Setpoint Scenario with Added
Data Markers on page 3-12 and Plant Inputs for the T Setpoint Scenario on
page 3-13 used the default controller settings. These often work well, but
the CSTR application is an exception. The following discussion covers the
main controller options in more detail, and shows how to tune a controller
for better performance.

This section covers the following topics:

• “Model and Horizons” on page 3-18

• “Weight Tuning” on page 3-19

• “Blocking” on page 3-25

• “Defining Manipulated Variable Constraints” on page 3-28

• “Disturbance Modeling and Estimation” on page 3-30

Model and Horizons
Select your MPC1 controller in the tree. The view shown in Controller
Options — Model and Horizons Tab on page 3-19 should appear. If necessary,
click theModel and Horizons tab to bring it to the front. This tab contains
the following controller options:

• Plant model specifies the LTI model to be used for controller predictions.

• Control interval sets the elapsed time between successive adjustments of
the controller’s manipulated variables.

• Prediction horizon is the number of control intervals over which the
outputs are to be optimized.

• Control horizon sets the number of control intervals over which the
manipulated variables are to be optimized.

• Selecting the Blocking option gives you more control over the way in
which the controller’s moves are allocated.

Leave all of the Model and Horizons tab settings at their default values
for now.

3-18

Changing Controller Settings

Controller Options — Model and Horizons Tab

Weight Tuning
Click the Weight Tuning tab. The view shown in Controller Options —
Weight Tuning Tab on page 3-20 appears.

3-19

3 Designing Controllers Using the Design Tool GUI

Controller Options — Weight Tuning Tab

Make the following changes (already done in the above view):

• In the Input weights section, change the coolant temperature’s Rate
Weight from the default 0.1 to 0.3.

• In the Output weights section, change the reactant concentration’s
Weight (last entry in the second row) from the default 1.0 to 0.

Test these changes using the T Setpoint scenario (click the toolbar’s
Simulation button).

Improved Setpoint Tracking for CSTR Temperature on page 3-21 shows that
the CSTR temperature now tracks the setpoint change smoothly, reaching the
new value in about 10 time units with no overshoot.

3-20

Changing Controller Settings

Improved Setpoint Tracking for CSTR Temperature

On the other hand, the reactant concentration, CA, exhibits a larger deviation
from its setpoint, which is being held constant at zero (compare to Plant
Outputs for T Setpoint Scenario with Added Data Markers on page 3-12,
where the final deviation is about a factor of 4 smaller).

This behavior reflects an unavoidable trade-off. The controller has only one
adjustment at its disposal: the coolant temperature. Therefore, it can’t satisfy
setpoints on both outputs.

Output Weights
The output weights let you dictate the accuracy with which each output
must track its setpoint. Specifically, the controller predicts deviations for
each output over the prediction horizon. It multiplies each deviation by
the output’s weight value, and then computes the weighted sum of squared
deviations, Sy(k), as follows

S k w r k i y k iy
y

j j j
j

n

i

P y

() [() ()]= + − +{ }
==
∑∑

2

11

3-21

3 Designing Controllers Using the Design Tool GUI

where k is the current sampling interval, k + i is a future sampling interval
(within the prediction horizon), P is the number of control intervals in the
prediction horizon, ny is the number of plant outputs, w

y
j is the weight for

output j, and the term [rj(k + i) – yj(k + i)] is a predicted deviation for output j
at interval k + 1.

The weights must be zero or positive. If a particular weight is large,
deviations for that output dominate Sy(k). One of the controller’s objectives
is to minimize Sy(k). Thus, a large weight on a particular output causes the
controller to minimize deviations in that output (relative to outputs having
smaller weights).

For example, the default values used to produce Plant Outputs for T Setpoint
Scenario with Added Data Markers on page 3-12 specify equal weights on
each output, so the controller is trying to eliminate deviations in both, which
is impossible. On the other hand, the design of Improved Setpoint Tracking
for CSTR Temperature on page 3-21 uses a weight of zero on the second
output, so it is able to eliminate deviations in the first output.

Note The second output is unmeasured. Its predictions rely on the plant
model and the temperature measurements. If the model were reliable, we
could hold the predicted concentration at a setpoint, allowing deviations in the
reactor temperature instead. In practice, it would be more common to control
the temperature as done here, using the predicted reactant concentration as
an auxiliary indicator.

You might expect equal output weights to result in equal output deviations at
steady state. Plant Outputs for T Setpoint Scenario with Added Data Markers
on page 3-12 shows that this is not the case. The reason is that the controller
is trying to satisfy several additional objectives simultaneously.

Rate Weights
One is to minimize the weighted sum of controller adjustments, calculated
according to

3-22

Changing Controller Settings

S k w u k iu j
u

j
j

n

i

M mv

Δ
Δ

==
= Δ + −{ }∑∑() () 1

2

11

where M is the number of intervals in the control horizon, nmv is the number

of manipulated variables, Δ + −u k ij ()1 is the predicted adjustment in
manipulated variable j at future (or current) sampling interval k + i – 1,

and wj
uΔ is the weight on this adjustment, called the rate weight because

it penalizes the incremental change rather than the cumulative value.
Increasing this weight forces the controller to make smaller, more cautious
adjustments.

Plant Inputs for Modified Rate Weight

Plant Inputs for Modified Rate Weight on page 3-23 shows that increasing the
rate weight from 0.1 to 0.3 decreases the move sizes significantly, especially
the initial move (compare to Plant Inputs for the T Setpoint Scenario on page
3-13).

Setting the rate weight to 0.1 yields a faster approach to the T setpoint with
a small overshoot, but the initial Tc move is about six times larger than

3-23

3 Designing Controllers Using the Design Tool GUI

needed to achieve the new steady state, which would be unacceptable in most
applications (not shown; try it).

Note The controller minimizes the sum Sy(k) + SΔu(k). Changes in the coolant
temperature have unequal effects on the two outputs, so the steady-state
output deviations won’t be equal, even when both output weights are unity
as in Plant Outputs for T Setpoint Scenario with Added Data Markers on
page 3-12.

Input Weights
The controller also minimizes the weighted sum of manipulated variable
deviations from their nominal values, computed according to

S k w u k i uu j
u

j j
j

n

i

M mv

() [()]= + − −{ }
==
∑∑ 1

2

11

where wuj is the input weight and uj is the nominal value for input j. In the
above simulations, you used the default, wuj = 0. This is the usual choice.

When a sustained disturbance or setpoint change occurs, the manipulated
variable must deviate permanently from its nominal value (as shown in
Plant Inputs for the T Setpoint Scenario on page 3-13 and Plant Inputs for
Modified Rate Weight on page 3-23). Using a nonzero input weight forces the
corresponding input back toward its nominal value. Test this by running a
simulation in which you set the input weight to 1. The final Tc value is closer
to its nominal value, but this causes T to deviate from the new setpoint (not
shown).

Note Some applications involve more manipulated variables than plant
outputs. In such cases, it is common to define nonzero input weights on certain
manipulated variables in order to hold them near their most economical
values. The remaining manipulated variables eliminate steady-state error
in the plant outputs.

3-24

Changing Controller Settings

Blocking
The section “Weight Tuning” on page 3-19 used penalty weights to shape the
controller’s response. This section covers the following topics:

• An alternative to penalty weighting, called blocking

• Side-by-side controller comparisons

To begin, select Controllers in the tree, and click the New button, creating a
controller initialized to the Model Predictive Control Toolbox default settings.
Rename this controller Blocking 1 by editing the appropriate table cell.

Select Blocking 1 in the tree, select its Weight Tuning tab, and set the
Weight for output C_A to 0 (see “Weight Tuning” on page 3-19 to review the
reason for this). Leave other weights at their defaults.

Now select theModel and Horizons tab, and select its Blocking check box.
This activates the blocking options. It also deactivates the Control Horizon
option (the blocking options override it).

Set Number of moves computed per step to 2. Verify that Blocking
allocation within prediction horizon is set to Beginning, the default.

Select Controllers in the tree, and use its Copy button to create two
controllers based on Blocking 1. Rename these Blocking 2 and Blocking 3.
Edit their blocking options, setting Blocking allocation within prediction
horizon to Uniform for Blocking 2, and to End for Blocking 3.

Select Scenarios in the tree. Rename the T Setpoint scenario to
T Setpoint 1, and set its Controller option to Blocking 1.

Create two copies of T Setpoint 1, naming them T Setpoint 2 and
T Setpoint 3. Set their Controller options to Blocking 2 and Blocking 3,
respectively. Now you should have three scenarios, identical except for the
controller being used.

Delete the MPC1 controller and select T Setpoint 1 in the tree. Your view
should resemble T Setpoint 1 Scenario on page 3-26, with three controllers
and three scenarios in the tree.

3-25

3 Designing Controllers Using the Design Tool GUI

T Setpoint 1 Scenario

If any simulation plot windows are open, close them. This forces subsequent
simulations to generate new plots.

Simulate each of the three scenarios. When you run the first, new plot
windows open. Leave them open when you run the other two scenarios so all
three results appear together, as shown in Blocking Comparison, Outputs on
page 3-27 and Blocking Comparison, Manipulated Variable on page 3-27.

3-26

Changing Controller Settings

Blocking Comparison, Outputs

Blocking Comparison, Manipulated Variable

The numeric annotations on these figures refer to the three scenarios. Recall
that T Setpoint 1 uses the default blocking, which usually results in faster
setpoint tracking but larger manipulated variable moves. The blocking
options in T Setpoint 2 and T Setpoint 3 reduce the move size but make
setpoint tracking more sluggish.

Results for T Setpoint 3 are very similar to those shown in Improved
Setpoint Tracking for CSTR Temperature on page 3-21 and Plant Inputs for
Modified Rate Weight on page 3-23, where a penalty rate weight reduced the
move sizes. If rate weights and blocking achieve the same ends, why does
the toolbox provide both features? One difference not evident in this simple

3-27

3 Designing Controllers Using the Design Tool GUI

problem is that blocking applies to all the manipulated variables in your
application, but each rate weight affects one only.

Note To obtain the dashed lines shown for T Setpoint 2, activate the plot
window and select Property Editor from the View menu. The Property
Editor appears at the bottom of the window. Then select the curve you want
to edit. The Property Editor lets you change the line type, thickness, color,
and symbol type. Select the axis labels to see additional options.

By default, the toolbox plots each scenario on the same plot. If you recalculate
a revised scenario, it replots that result but doesn’t change any others.

If you don’t want to see a particular scenario, right-click the plot and use the
Responses menu option to hide it. (You can also close the plot window and
recalculate selected responses in a fresh window.)

Defining Manipulated Variable Constraints
Physical devices have limited ranges and rates of change. For example, the
CSTR model’s coolant might be restricted to a 20 degree range (from –10 to
10) and its maximum rate of change might be ±4 degrees per control interval.
If these are true physical restrictions, it’s good practice to include them in
the controller design. Otherwise the controller might attempt an unrealistic
adjustment.

To compare constrained and unconstrained performance for the CSTR example,
select the Blocking 1 controller in the tree, and rename it Unconstrained.

Select its Model and Horizons tab and turn off (clear) its Blocking option.
Increase Control horizon to 3, and reduce Control Interval to 0.25.

Delete the Blocking 2 and Blocking 3 controllers. (Click Yes or OK to
dismiss the resulting warning messages.)

Copy the Unconstrained controller. Name this copy MVconstraints, and
select its Constraints tab. Then enter the manipulated variable constraints
shown in Entering CSTR Manipulated Variable Constraints on page 3-29.

3-28

Changing Controller Settings

Entering CSTR Manipulated Variable Constraints

If any simulation plot windows are open, close them (to force fresh plots).

Select the T Setpoint 1 scenario. If necessary, set its Controller option to
Unconstrained. Change Duration to 15, and simulate the scenario.

Select the T Setpoint 2 scenario, set its Controller option to MVconstraints,
change its Duration to 15, and simulate it. The results appear in CSTR
Outputs, Unconstrained (1) and MVconstraints (2) on page 3-30 and CSTR
Manipulated Variable, Unconstrained (1) and MVconstraints (2) on page 3-30.

The larger control horizon and smaller control interval cause the
unconstrained controller to make larger moves (see CSTR Manipulated
Variable, Unconstrained (1) and MVconstraints (2) on page 3-30, curve 1).
The output settles at the new setpoint in about 5 time units rather than the
10 required previously (compare curve 1 in CSTR Outputs, Unconstrained
(1) and MVconstraints (2) on page 3-30 to curve 1 in Blocking Comparison,
Outputs on page 3-27).

CSTR Manipulated Variable, Unconstrained (1) and MVconstraints (2) on
page 3-30 (curve 2) shows that the Max Up Rate constraint limits the size
of the first two moves to 4 degrees. The third move hits the Maximum
constraint at 10 degrees. The coolant temperature remains saturated at its
upper limit for the next 7 control intervals, then slowly moves back down
to its final value.

CSTR Outputs, Unconstrained (1) and MVconstraints (2) on page 3-30
(curve 2) shows that the output response is slower, but still settles at the

3-29

3 Designing Controllers Using the Design Tool GUI

new setpoint smoothly within about 5 time units. This demonstrates the
anti-windup protection provided automatically by the Model Predictive
Control Toolbox controller.

CSTR Outputs, Unconstrained (1) and MVconstraints (2)

CSTR Manipulated Variable, Unconstrained (1) and MVconstraints (2)

Disturbance Modeling and Estimation
The previous sections tested the controller’s response to setpoint changes.
In process control, disturbances rejection is often more important. The
Model Predictive Control Toolbox product allows you to tailor the controller’s
disturbance response. The following example assumes that you have just
completed the previous section, and the design tool is still open.

3-30

Changing Controller Settings

Select the first controller in the tree and rename it InputSteps. (Its settings
should be identical to the Unconstrained controller of the previous section.)

Copy this controller. Rename the copy OutputSteps. Click its Estimation
tab. The initial view should be as in Default Output Disturbance Settings for
CSTR on page 3-32. Note the following:

• Model Predictive Control Toolbox default settings are being used. (The
Use Model Predictive Control Defaults button restores these settings
if you modify them.)

• The Output Disturbances tab is selected, and the Signal-by-signal
option is selected. The graphic shows that the output disturbances add
to each output.

• The tabular entries show, however, that these disturbance magnitudes
are currently zero.

3-31

3 Designing Controllers Using the Design Tool GUI

Default Output Disturbance Settings for CSTR

Click the Input Disturbances tab. (This would be inactive if the plant model
had no unmeasured disturbances.) The view should change to that shown in
Default Input Disturbance Settings for CSTR on page 3-33.

3-32

Changing Controller Settings

Default Input Disturbance Settings for CSTR

In this case the disturbance magnitude is nonzero, and the disturbance type is
Steps. Thus, the controller assumes that disturbances enter as random steps
(integrated white noise) at the plant’s unmeasured disturbance input.

Click theMeasurement Noise tab, verifying that the controller is assuming
white noise, magnitude 1 (not shown).

The following summarizes Model Predictive Control Toolbox default
disturbance modeling assumptions for this case:

• Additive output disturbances: none

• Unmeasured input disturbances: random steps (integrated white noise)

• Measurement noise: white

3-33

3 Designing Controllers Using the Design Tool GUI

In general, if your plant model includes unmeasured disturbance inputs, the
toolbox default strategy will assume that they are dominant and sustained,
as in the above example. This forces the controller to include an integrating
mode, intended to eliminate steady-state error.

If the plant model contains no unmeasured input disturbances, the toolbox
assumes sustained (integrated white noise) disturbances at the measured
plant outputs.

If there are more measured outputs than unmeasured input disturbances, it
assumes sustained disturbances in both locations according to an algorithm
described in the product’s online documentation.

In any case, the design tool displays the assumptions being used.

To modify the estimation strategy in the OutputSteps controller, do the
following:

• Click the Input Disturbances tab. Set the disturbance Type to White,
and its Magnitude to 0.

• Click the Output Disturbances tab. For the T output, set the disturbance
Type to Steps, and its magnitude to 1.

This reverses the default assumptions, i.e., the OutputSteps controller
assumes that sustained disturbances enter at the plant output rather than at
the unmeasured disturbance input. The InputSteps controller is still using
the original (default) assumptions.

Next, select the first scenario in the tree. Rename it Disturbance 1, set its
Duration to 30, define all setpoints as constant zero values, and define a
unit-step disturbance in the unmeasured input, C_A_i. If necessary, set its
Controller option to InputSteps . CSTR Disturbance 1 Scenario on page
3-35 shows the final Disturbance 1 scenario.

3-34

Changing Controller Settings

CSTR Disturbance 1 Scenario

Copy Disturbance 1. Rename the copy Disturbance 2, and set its
Controller option to OutputSteps.

If necessary, close any open simulation plot windows. Simulate both
scenarios. CSTR Outputs for Disturbance Scenarios 1 and 2 on page 3-36 and
CSTR Inputs for Disturbance Scenarios 1 and 2 on page 3-36 show the results.

CSTR Outputs for Disturbance Scenarios 1 and 2 on page 3-36 shows that
default controller (case 1) returns to the setpoint in less than one third the
time required by the modified controller (case 2). Its maximum deviation from
the setpoint is also 10% smaller. CSTR Inputs for Disturbance Scenarios 1
and 2 on page 3-36 shows that in both cases the input moves are smooth and
of reasonable magnitude. (It also shows the input disturbance.)

3-35

3 Designing Controllers Using the Design Tool GUI

The default controller expects unmeasured disturbances to enter as defined in
the scenarios, so it’s not surprising that the default controller performs better.
The point is that the difference can be large, so it merits design consideration.

CSTR Outputs for Disturbance Scenarios 1 and 2

CSTR Inputs for Disturbance Scenarios 1 and 2

3-36

Changing Controller Settings

For comparison, reset the two scenarios so that the only disturbance is a
one-degree step increase added to the measured reactor temperature. The
modified controller (case 2) is designed for such disturbances, and CSTR
Outputs, Output Disturbance Scenarios 1 and 2 on page 3-37 shows that
it performs better, but the difference is less dramatic than in the previous
scenario. The default controller is likely to be best if the real process has
multiple dominant disturbance sources.

CSTR Outputs, Output Disturbance Scenarios 1 and 2

3-37

3 Designing Controllers Using the Design Tool GUI

Defining Soft Output Constraints
The discussion in “Weight Tuning” on page 3-19, defined temperature control
as the primary goal for the CSTR application. The predicted (but unmeasured)
reactant concentration, CA, could vary freely.

Suppose this were acceptable provided that CA stayed below a specified
maximum (above which unwanted reactions would occur). You can use an
output constraint to enforce this specification.

Start with a single controller identical to the InputSteps controller described
in “Disturbance Modeling and Estimation” on page 3-30. Rename it
Unconstrained.

Right-click Unconstrained in the tree and select Copy. Rename the copy
Yhard. Make another copy, naming it Ysoft.

Similarly, start with a single scenario identical to CSTR Disturbance
1 Scenario on page 3-35, except that its Controller setting should be
Unconstrained. Name this scenario None.

Right-click None in the tree and select Copy. Rename the copy Hard, and
change its Controller setting to Yhard. Make another copy, naming it Soft
and changing its Controller setting to Ysoft. Your tree should be as shown
below.

Select your Yhard controller. On the Constraints tab, set the maximum
for CA to 3 as shown below.

3-38

Defining Soft Output Constraints

Click the Constraint Softening button to open the dialog box in Constraint
Softening Dialog Box on page 3-39. The Input constraints section shows
the bounds on the inputs and their rates, and relaxation bands, which let you
soften these constraints. By default, input constraints are hard, meaning that
the controller tries to prevent any violation.

Constraint Softening Dialog Box

The Output constraints section lists the output limits and their relaxation
bands. By default, the output constraints are soft. Make the CA upper limit
hard by entering a zero as its relaxation band (as in Constraint Softening
Dialog Box on page 3-39).

Select the Ysoft controller. Define a soft upper bound on CA by using the
same settings shown in Constraint Softening Dialog Box on page 3-39, but
with a relaxation band of 100 instead of 0.

3-39

3 Designing Controllers Using the Design Tool GUI

Simulate the three scenarios in the order they appear in the tree, i.e., None,
Hard, Soft. The resulting output responses appear in Constraint Softening
Scenarios: 1 = None, 2 = Hard, 3 = Soft on page 3-40.

Constraint Softening Scenarios: 1 = None, 2 = Hard, 3 = Soft

Curve 1 is without output constraints, which is identical to curve 1 in CSTR
Outputs for Disturbance Scenarios 1 and 2 on page 3-36. This controller
allows the CA output to vary freely, but the controlled temperature returns to
its setpoint within 10 time units after the disturbance happens.

Curve 2 shows the behavior with a hard upper limit at CA = 3. Once CA
reaches this bound, the controller must use its one manipulated variable (Tc)
to satisfy the constraint, so it’s no longer able to control the temperature.

Curve 3 shows the result for a soft constraint. The controller reaches a
compromise between the competing objectives: temperature control and
constraint satisfaction. As you’d expect, performance lies between the curve 1
and curve 2 extremes.

The numerical value of the relaxation band represents a relative tolerance for
constraint violations, not a strict limit (if it were the latter, it would be a hard
constraint). If you were to increase its relaxation band (currently set at 100),
performance would move toward Case 1, and vice versa.

3-40

Defining Soft Output Constraints

If you have multiple constraints, you can harden or soften them
simultaneously using the slider at the bottom of the controller’s constraint
softening dialog box (see Constraint Softening Dialog Box on page 3-39).

In general, you’ll have to experiment to determine the settings that provide
appropriate trade-offs for your application. In particular, the relaxation
band settings interact with those on the controller’s Weight Tuning tab
(see “Weight Tuning” on page 3-19).

Another important factor is the expected numerical range for each variable.
For example, if a particular variable stays within ±0.1 of its nominal value,
it should have a small relaxation band relative to another variable having
a range of ±100.

For details on the Model Predictive Control Toolbox constraint softening
formulation, see “Optimization Problem” in the Model Predictive Control
Toolbox User’s Guide.

3-41

3 Designing Controllers Using the Design Tool GUI

Robustness Testing
It’s good practice to test your controller’s sensitivity to prediction errors.
Classical phase and gain margins are one way to quantify robustness for a
SISO application. Robust Control Toolbox™ software provides sophisticated
approaches for MIMO systems. It can also be helpful to run simulations. The
following example illustrates the simulation approach.

Plant Model Perturbation
Use the following code to create a perturbed version of the CSTR model:

CSTRp = CSTR;
CSTRp.a=[-0.0303 -0.0113

-0.0569 -0.1836];
CSTRp.b=[-0.0857 0.0191

0.1393 0.4241];

This creates a copy of CSTR called CSTRp, then replaces the state space A
and B matrices with perturbed versions (compare to the originals defined in
“State-Space Format” on page 2-5). Use the following command to compare
the two step responses:

step(CSTR, CSTRp)

Observe the difference in the responses (not shown).

Select Plant models in the tree. Click the Import button and import the
CSTRp model.

Simulation Tests
Delete all controllers except the first one in the tree. If necessary, make its
settings identical to Unconstrained (see “Defining Manipulated Variable
Constraints” on page 3-28).

Delete all scenarios except the first, naming that Accurate Model. Define
its properties as shown in Robustness Test, Accurate Plant Model Scenario
on page 3-43. The scenario begins with a step change in the temperature

3-42

Robustness Testing

setpoint, followed 25 time units later by a step disturbance in the reactant
entering the CSTR.

Copy Accurate Model. Rename the copy Perturbed Model, and set its
Plant option to CSTRp. Thus, both scenarios use the same controller, which is
based on the CSTR model, but the Perturbed Model scenario uses a different
model to represent the “real” plant. This tests the controller’s robustness to a
change in plant parameters.

Robustness Test, Accurate Plant Model Scenario

Simulate the two scenarios. Robustness Test, Accurate Model (1) and
Perturbed Model (2) on page 3-44 shows the output responses. As expected,
setpoint tracking degrades when the model is inaccurate, but performance is
still acceptable.

The disturbance rejection appears to improve with the perturbed model.
This is a consequence of the perturbations used. The gain for the T/CAi
output/input pair is about 15% smaller in the CSTRp model, which has two

3-43

3 Designing Controllers Using the Design Tool GUI

beneficial effects: the actual impact of the disturbance is reduced, and the
controller is aggressive because it expects a larger impact.

Robustness Test, Accurate Model (1) and Perturbed Model (2)

Note MIMO applications are usually more sensitive to model error than SISO
applications, so robustness testing is especially recommended for MIMO cases.

3-44

Plant Models with Delays

Plant Models with Delays
Unlike many controller design approaches, the Model Predictive Control
Toolbox can handle models that include delays. A typical example is the
distillation column model, DC, introduced in “Multiinput-Multioutput (MIMO)
Plants” on page 2-11. The model includes a delay in each input/output
channel.

The presence of delays will influence controller performance, and your
controller specifications should account for them. The following example
provides some guidelines and covers the following topics:

• “Importing the Plant Model” on page 3-45

• “Specifying Controller Horizons” on page 3-46

Importing the Plant Model
To learn how to create the DC model, see “Multiinput-Multioutput (MIMO)
Plants” on page 2-11. You must import the DC model into the MATLAB
workspace.

Start the Model Predictive Control Toolbox design tool (type mpctool at the
MATLAB command line). Import the DC model (see “Loading a Plant Model”
on page 3-3).

Select Plant models in the tree. The DC model should be the only one listed.
Scroll theModel details view to show the last few lines, which should appear
as in DC Model Details, Maximum Delay Values on page 3-45.

DC Model Details, Maximum Delay Values

3-45

3 Designing Controllers Using the Design Tool GUI

Specifying Controller Horizons
The model’s maximum I/O delay is 6.7 minutes. It is good practice to specify
the prediction and control horizons such that

P M t td max− Δ� , /

where P is the prediction horizon, M is the control horizon, td,max is the
maximum delay, and Δt is the control interval.

SelectMPC1 (the default controller name) in the tree. Click the Model and
Horizons tab, and set Control interval to 1, a reasonable choice if the
closed-loop response time is to be of order 5-10 minutes.

Given the amount of plant delay and the specified control interval, the default
horizons, P = 10, M = 2, would be a poor choice. Instead, set Prediction
horizon to 30, and Control horizon to 5.

Select Scenario1 in the tree. Set Duration to 50. Define a constant setpoint
of 1 for the first output (the distillate purity). Define a step increase of 1 in the
second output’s setpoint, occurring at t = 25. All other signals should be zero.
Simulate the scenario. DC Setpoint Response Scenario, Outputs on page 3-47
and DC Setpoint Response Scenario, Inputs on page 3-47 show the results.

3-46

Plant Models with Delays

DC Setpoint Response Scenario, Outputs

DC Setpoint Response Scenario, Inputs

As seen in DC Setpoint Response Scenario, Outputs on page 3-47, the first
output cannot respond for a minimum of one minute, the delay in the y1/u1
transfer function. After that, it reaches the setpoint in two minutes and

3-47

3 Designing Controllers Using the Design Tool GUI

settles quickly. Similarly, y2 cannot respond for a minimum of three minutes,
the delay in the y2/u2 transfer function, but settles rapidly thereafter.
Changing one setpoint disturbs the other output, but the magnitude of this
interaction is less than 10%.

DC Setpoint Response Scenario, Inputs on page 3-47 shows that the initial
input moves are more than five times the final change. Also, there are
periodic pulses in the control action as the controller attempts to counteract
the delayed effects of each input on the two outputs.

You can moderate these effects using the weights (see “Weight Tuning” on
page 3-19). Instead, define a custom blocking strategy as illustrated in DC
Model, Custom Blocking Strategy on page 3-48. This uses five moves as
before, but allocates them more uniformly over the prediction horizon.

Output Responses for Setpoint Scenario with Blocking on page 3-49 and
Input Moves for Setpoint Scenario with Blocking on page 3-49 show the
corresponding simulation results. The initial input moves are much smaller,
and the moves are less oscillatory overall. The trade-off is a slower output
response with about 20% interaction.

DC Model, Custom Blocking Strategy

3-48

Plant Models with Delays

Output Responses for Setpoint Scenario with Blocking

Input Moves for Setpoint Scenario with Blocking

3-49

3 Designing Controllers Using the Design Tool GUI

Nonsquare Plants
A nonsquare plant has an unequal number of manipulated variables and
output variables. This is common in practice, and the Model Predictive
Control Toolbox software supports an excess of manipulated variables or
outputs. In such cases you will usually need to modify default toolbox settings.

This section covers the following topics:

• “More Outputs Than Manipulated Variables” on page 3-50

• “More Manipulated Variables Than Outputs” on page 3-51

More Outputs Than Manipulated Variables
When there are excess outputs, you can’t hold each at a setpoint. You have
the following options:

1 Enforce setpoints on all outputs, in which case all will deviate from their
setpoints to some extent.

2 Specify that certain outputs need not be held at setpoints by setting their
weights to zero on the controller’s Weight Tuning tab.

The initial test of the CSTR controller used option 1 (the default), which caused
both outputs to deviate from their setpoints (see Plant Outputs for T Setpoint
Scenario with Added Data Markers on page 3-12). You can adjust the offset
in each output by changing the output weights. Increasing an output weight
decreases the offset in that output (at the expense of increased offset in other
outputs).

The modified CSTR controller used option 2 (see the discussion in “Weight
Tuning” on page 3-19). In general, if the application has Ne more outputs than
manipulated variables, setting Ne output weights to zero should allow the
remaining outputs to be held at setpoints (unless the manipulated variables
are constrained). This was the case for the modified CSTR controller (see
Improved Setpoint Tracking for CSTR Temperature on page 3-21).

Outputs that have been “sacrificed” by setting their weights to zero can still be
useful. If measured, they can help the controller to estimate the plant’s state,

3-50

Nonsquare Plants

thereby improving its predictions. They can also be used as indicators, or as
variables to be held within an operating region defined by output constraints.

More Manipulated Variables Than Outputs
In this situation, default Model Predictive Control Toolbox settings should
provide offset-free output-setpoint tracking, but the manipulated variables
are likely to drift.

One way to avoid this is to use manipulated variable setpoints. If there are Ne
excess manipulated variables and you hold Ne of them at target values, the
rest should not drift. Rather, they will attain the values needed to eliminate
output offset.

To define a manipulated variable setpoint:

1 Enter the setpoint value in the Nominal field in the signal properties view
– see Model Predictive Control Toolbox Design Tool’s Signal Definition
View on page 3-5.

2 Assign a nonzero input weight using the Weight entry on the controller’s
Weight Tuning tab – see Controller Options — Weight Tuning Tab on
page 3-20.

In step 2, the magnitude of the input weight determines the extent to which
the manipulated variable can deviate from its target during a transient. See
“Input Weights” on page 3-24 for more discussion and mathematical details.

You might want to allow such deviations temporarily in order to provide
better output setpoint tracking. In that case, use a relatively small input
weight. If you want the manipulated variable to stay near its target value at
all times, increase its input weight.

Another way to avoid drift is to constrain one or more manipulated variables
to a narrow operating region. You can even hold an MV constant by setting its
lower and upper bounds to the same value (in which case its nominal value
should also be set to this value), or by setting both of its rate constraints
to zero. To define constraints, use the controller’s Constraints tab (see
“Defining Manipulated Variable Constraints” on page 3-28).

3-51

3 Designing Controllers Using the Design Tool GUI

Nonlinear Plants
You can control a Simulink plant modeled using a Model Predictive Control
Toolbox Simulink block. This section illustrates the procedure using the
nonlinear CSTR model introduced earlier (see “Using Simulink to Develop LTI
Models” on page 2-19). It covers the following topics:

• “MPC Controller Block” on page 3-52

• “Initiating the Controller Design” on page 3-53

• “Validating the Linearized Model” on page 3-56

• “Modifying the Linearized Model” on page 3-58

• “Linear Simulation Tests” on page 3-59

• “Nonlinear Simulation Tests” on page 3-61

• “Modifying the Controller Using the Design Tool” on page 3-63

• “Exiting the Design Tool” on page 3-63

MPC Controller Block
Simulink Model for CSTR Control on page 3-53 shows CSTR with an added
MPC Controller block. (The model is called CSTR_MPC.mdl in the Model
Predictive Control Toolbox demos folder.) The intent is to hold the residual
concentration at a setpoint by adjusting the coolant temperature. The feed
concentration and temperature inputs are disturbances, and the reactor
temperature is an auxiliary, uncontrolled output. The concentration has a
setpoint (reference), currently fixed at 8.57.

3-52

Nonlinear Plants

Simulink Model for CSTR Control

Note If you have Model Predictive Control Toolbox software and Simulink
installed, the MPC Controller block appears in your Simulink block library. If
necessary, see the Simulink documentation for details on how to use library
blocks to construct a model.

Initiating the Controller Design
Once you’ve installed an MPC Controller block in your Simulink model, as
in Simulink Model for CSTR Control on page 3-53, you need to configure it.
Click it to open its block mask, and verify that it is as shown below.

3-53

3 Designing Controllers Using the Design Tool GUI

MPC Controller Block Mask

If you had used the design tool to create a controller and had saved it in your
workspace, you could type its name in theMPC controller box and you’d be
ready to test it.

Instead, create the controller using the Model Predictive Control Toolbox
design tool. To do so, click the Design button. A dialog box (not shown) asks
you to enter the number of manipulated variables, which are the plant inputs
the controller can adjust to achieve its objectives. The coolant temperature
is the only manipulated variable. Verify that the dialog box entry is 1 and
click OK.

The following progress window marks the completion of each controller
initialization step.

3-54

Nonlinear Plants

They are as follows:

1 Open the Control and Estimation Tools Manager, and install a project
having the same name as the Simulink model (CSTR_MPC in this case).

2 Install a linearization task within the project and determine the plant’s
I/O points, i.e., the signals connected to the MPC Controller block’s mv
(manipulated variable) and mo (measured output) ports.

3 Determine a default operating point. This requires assumptions that might
be incorrect, as demonstrated in the next section. In particular, the default
outputs are zero.

4 Calculate a linearized plant model at this operating point using the
linearization tool in Simulink® Control Design (see “Linearization Using
Simulink® Control Design” on page 2-19). The controller is open loop during
this step and involves only the blocks between the plant inputs and outputs
(as determined in step 2).

5 Install a Model Predictive Control Toolbox design task in the project.
Use the linearized model from step 4 to define a default controller
(named MPC1), and enter its name as the block mask’s MPC controller
parameter.

When the last step has been completed, click OK to close the progress window.

3-55

3 Designing Controllers Using the Design Tool GUI

Validating the Linearized Model
Automatic linearization requires assumptions that might be incorrect. You
should always validate a linearized model before using it in a controller.

As shown below, the controller task is the MPC Controller node, the name
of the corresponding Simulink block.

Note In general, a Simulink model can contain multiple controllers, in which
case the project would include multiple controller design tasks, each with
a unique name.

Start by examining the default operating point. Expand the tree until it
appears as above, and then select Operating Point. The States tab should
be active as shown (if not, click it).

By default, the Simulink Control Design linearization tool tries to find a
steady-state point, i.e., it sets the Desired dx column to zero. As shown
above, the Actual dx column contains one value that is far from zero (4.9991),
i.e., it has failed to achieve this goal.

Note Don’t be concerned if you see numerical values that differ slightly from
those shown.

3-56

Nonlinear Plants

Next, click the Outputs tab. By default, the linearization tool sets the desired
plant output to zero. In the CSTR, this would require 100% conversion of the
reactant, which is impossible, and the Outputs tab confirms that the desired
values were not achieved.

Finally, export the linearized model to your workspace. Right-click the
MPC open loop plant 1 node and choose Export to open the following
dialog box.

Rename Linearized Model to Plant1 as shown, clear the Operating Point
check box (because there’s no reason to export it), and click OK. This exports
the linearized model as an LTI object named Plant1.

At the MATLAB command line, type:

step(Plant1)

You should obtain the following plot.

3-57

3 Designing Controllers Using the Design Tool GUI

Thus, the linearized model predicts that a unit step increase in the coolant
temperature will decrease the residual concentration, which is qualitatively
correct. (Increasing the coolant temperature increases the reactor
temperature. This increases the reaction rate, and the residual concentration
decreases.)

The predicted magnitude is very small, however: of order 10–6. It should be
of order 10–2 (you can verify this by removing the controller block from the
diagram and running an open-loop step-response simulation). The incorrect
assumptions used to generate the default operating point are the cause. If
this incorrect model were used in the controller, the coolant-temperature
adjustments would be far too large, probably resulting in unstable behavior.

Modifying the Linearized Model
Therefore, the next step is to define a reasonable operating point and calculate
a corresponding linearized model.

In the navigation tree, click the MPC Task - MPC Controller node. Notice
that the nominal input and output signal values are zero by default. As
discussed in “Linearization Using Simulink® Control Design” on page 2-19,
the plant is at steady state at a coolant temperature of 298.15 K and a residual

3-58

Nonlinear Plants

concentration of 8.57 kmol/m3. Thus, in the Input signal properties table,
set the coolant temperature’s nominal value to 298.15, as shown below, and
in the Output signal properties table, set the concentration’s nominal
value to 8.57. Also assign more descriptive signal names, as shown.

Click the Import Plant button to open the Plant Model Importer dialog box.
Then do the following:

1 Click the Linearized Plant from Simulink tab.

2 Change the Linearization model name to Plant2.

3 Select Create a new operating condition from MPC I/O values, and
then clickOK. A new model node named Plant2 and its operating point will
appear within your design task. Verify that its actual dx values are now all
close to zero and the outputs are essentially equal to their desired values.

4 Expand the Controllers node to expose the MPC1 node and select it. On
itsModel and Horizons pane, set Plant model to Plant2. This replaces
the default (invalid) model with the modified one.

Leave the other controller settings at their default values.

Linear Simulation Tests
It’s good practice to test a controller in linear simulations before trying it on
the nonlinear plant. Expand the Scenarios node and select Scenario1. Set

3-59

3 Designing Controllers Using the Design Tool GUI

Plant to Plant2, and set Duration to 40. Finally, define a step increase of
0.5 units in the concentration setpoint starting at time t = 1, as shown below.

Click the scenario’s Simulate button. This linear test predicts a smooth,
rapid approach to the new setpoint with minimal overshoot, as shown below.

The corresponding coolant temperature adjustments are reasonable (not
shown). If anything, you might want to make the controller more aggressive
by adjusting its tuning weights (see “Weight Tuning” on page 3-19).

Note This plant’s steady-state gain is of order 0.01. Therefore, the default
tuning weights lead to a relatively sluggish response. In general, you must
adjust the tuning weights to compensate for the plant’s natural input/output
response magnitudes.

3-60

Nonlinear Plants

You can also run tests to verify that the controller responds rapidly to either
of the two unmeasured disturbances (not shown).

Nonlinear Simulation Tests
The controller seems to be performing well in linear tests, so try it with the
nonlinear plant. As will be demonstrated below, you can run simulations that
automatically use your latest design from the design tool. If the performance
is unsatisfactory, you can easily change your design and retest.

In the CSTR_MPC model window, change the concentration setpoint to 9.07.
This simulates a 0.5-unit step increase in the setpoint at time t = 0. Run the
Simulink simulation. The MPC Controller block automatically obtains the
most recent MPC1 definition from the design tool. If necessary, open the
model’s concentration scope block. The result should be as shown below.

The nonlinear response is more sluggish than the linear prediction. The
controller reduces the coolant temperature to about 284.6 K (verify this
by opening the model’s coolant temperature scope), whereas the linear
simulation predicts a reduction to 289.4 K. In other words, when plant
moves in this direction, the linearized model’s gain is too large. Still, the
concentration goes to the setpoint rapidly.

Next, set the concentration setpoint to 8.07, i.e., a step-change of equal
magnitude in the opposite direction. Run the simulation to obtain the
concentration scope response shown below.

3-61

3 Designing Controllers Using the Design Tool GUI

In this direction, the response is underdamped. You can verify that the
controller changes the coolant temperature to 304.1 K, an increase of 6.0 K
(recall the decrease of 13.5 K when the change was in the opposite direction).
In other words, the controller’s linear model underpredicts the effect of a
coolant temperature increase. If the setpoint were reduced significantly, the
closed-loop system would become unstable (try 7.0, for example).

Thus, the controller’s effective operating range is limited. If you wanted to
operate at a low concentration, you’d need to determine a linearized model at
that condition and use it to design another controller.

Note This is typical of strongly nonlinear plants. If you needed to operate
a conventional controller over such a wide range, you might consider gain
scheduling. Equivalently, you could define predictive controllers for several
operating points and switch from one to another depending on the measured
concentration (see “Simulations Involving Nonlinear Plants” on page 4-9 for
an example of this).

For the tested range, however, the oscillations die out quickly. You can verify
that the controller responds equally well to small, sustained disturbances (i.e.,
±0.5 in feed concentration or ±3 in feed temperature.

3-62

Nonlinear Plants

Modifying the Controller Using the Design Tool
Keeping the design tool open makes it easy to test controller modifications.
Each time you run a Simulink simulation, the MPC Controller block
automatically obtains the latest settings for its MPC controller parameter
(MPC1 in the above tests).

It’s also easy to compare several controllers. Suppose you wanted to try
a different control interval (the controller designed above uses a 1-second
interval). Create a new controller by right-clicking the design tool’s MPC1
controller node, and selecting Copy Controller in the menu. This creates a
duplicate controller called MPC1_copy. Rename it MPC2. Select MPC2 in
the tree, activate itsModel and Horizons tab and set Control interval to 2.

Now return to the MPC Controller block mask (if necessary, double-click the
block to open the mask) and change MPC controller from MPC1 to MPC2.
Close the mask or click the Apply button to notify the controller of this
change. Run a simulation with a disturbance or setpoint change, and then
open the Coolant Temperature scope. You should see that the controller is
now making step-wise adjustments every 2 minutes. As would be expected,
controller performance degrades with less frequent measurement feedback,
but not much in this case.

To restore the original controller, just change MPC2 to MPC1 in the block mask
and click Apply.

Exiting the Design Tool
When you close the design tool, you’ll be prompted to save any projects you’ve
created or edited. For details, see “Saving a Project” on page 3-65.

Once the design tool has closed, the MPC Controller block mask expects its
controller object to be in your workspace. Thus, you’ll also be prompted to
export such controller objects. You need to do this if you plan to run your
Simulink model after you’ve closed the design tool.

3-63

3 Designing Controllers Using the Design Tool GUI

Saving Your Work
You’ll usually want to save your design so you can reuse or revise it. You can
save individual controllers or an entire project.

When you close the design tool, you’ll be prompted to save new or modified
designs. You can also save manually to preserve an intermediate state or
guard against an unexpected shutdown.

This section covers the following topics:

• “Exporting a Controller” on page 3-64

• “Saving a Project” on page 3-65

Exporting a Controller
To save a controller, export it to your MATLAB workspace or to a MAT-file.
The former allows you to use the exported controller in command-line
functions or a Simulink block.

Note Your workspace disappears when you exit MATLAB. A MAT-file is
permanent, and you can reload it in a subsequent MATLAB session.

The following example assumes that the design tool is open and in the state
described in the previous section. Suppose you want to export the controller
to your workspace. Expand the tree if necessary, right-click MPC2, and
select Export Controller from the resulting menu. The following dialog
box appears.

3-64

Saving Your Work

The default behavior is to export the selected controller to the workspace.
Click Export to confirm. You can verify the export by typing

whos

at the MATLAB prompt. The resulting list should include an mpc object
named MPC2. Type

MPC2

to display the object’s properties.

Saving a Project
To save your entire project, click the toolbar’s Save button.

The following dialog box appears.

3-65

3 Designing Controllers Using the Design Tool GUI

Dialog Box for Saving a Controller Design Project

The default behavior saves the current project (named Project - CSTR_MPC
in this case) in a MAT-file (called CSTR_MPC here). If the design tool had
contained other projects, they would appear in the list, and you could select
the ones you wanted to save.

The MAT-file will be saved in the default folder. To verify the location, click
the Browse (...) button and change the folder if necessary. When ready to
save, click OK.

3-66

Loading Your Saved Work

Loading Your Saved Work
The following assumes that you’ve saved a project as described in the previous
section. To reload this project, close the design tool if it’s open. Also clear any
mpc objects from your workspace. (Type whos at the MATLAB prompt for a
list of objects.) For example, if MPC1 and MPC2 are in your workspace, type

clear MPC1 MPC2

to clear (remove) them.

If you’ve closed the CSTR_MPC model, open it. (Simulink Model for CSTR
Control on page 3-53 shows the model diagram). Double-click the MPC
Controller block to open its mask, and verify that the MPC Controller
parameter is set to MPC2.

Note If you were to attempt to run the CSTR_MPC model at this stage, an
error dialog box would indicate that the MPC Controller block was unable to
initialize. The MPC2 object specified in the block mask must be loaded into
your workspace or be part of an active design tool task.

You could define the required MPC2 object in one of the following ways:

• Import MPC2 from a MAT-file (assuming you had saved it as explained in
“Exporting a Controller” on page 3-64).

• Load the model’s project file, which contains a copy of MPC2.

To use the second approach, open the design tool by typing

mpctool

in the MATLAB Command Window. This creates a blank Model Predictive
Control Toolbox project called MPCdesign. Click the Load button on the
toolbar.

3-67

3 Designing Controllers Using the Design Tool GUI

This opens a dialog box similar to that shown in Dialog Box for Saving a
Controller Design Project on page 3-66. Use it to select the project file you’ve
saved, and then click OK to load the project. It should appear in the tree.
Verify that it contains a controller named MPC2.

Run the CSTR_MPC model in Simulink. The block mask automatically retrieves
MPC2 from the design tool, and the simulation runs. In other words, loading
the project automatically restores the link between the design tool and the
MPC Controller block.

3-68

4

Designing Controllers
Using the Command Line

• “Controller Definition” on page 4-2

• “Linear Simulations” on page 4-7

• “Simulations Involving Nonlinear Plants” on page 4-9

• “Control Based On Multiple Plant Models” on page 4-14

• “Analysis Tools” on page 4-22

• “Bibliography” on page 4-25

4 Designing Controllers Using the Command Line

Controller Definition
Chapter 3, “Designing Controllers Using the Design Tool GUI” showed how
to use the Model Predictive Control Toolbox design tool to create a controller
and test it. You might prefer to use functions instead. They allow access to
options not available in the design tool, as well as automation of repetitive
tasks using scripts and customized plotting.

This section covers the following topics:

• “Creating a Controller Object” on page 4-2

• “Viewing and Altering Controller Properties” on page 4-3

Creating a Controller Object
The following uses the CSTR model described in Chapter 2, “Building Models”
as an example. To follow along, verify that the model’s LTI object is in your
MATLAB workspace (if necessary, create it as explained in “Chemical Reactor
Example” on page 2-5, and set its label and signal type properties as explained
in “LTI Properties for the CSTR Example” on page 2-7).

Use the mpc function to create a controller. For example, type

Ts = 1;
MPCobj = mpc(CSTR, Ts);

to create one based on the CSTR model with a control interval of 1 time unit
and all other parameters at their default values.

Note MPCobj is an MPC object. It contains a complete controller definition for
use with Model Predictive Control Toolbox software.

To display the controller’s properties in the Command Window, type

display(MPCobj)

or type the object’s name without a trailing semicolon.

4-2

Controller Definition

Viewing and Altering Controller Properties
Once you’ve defined an MPC object, it’s easy to alter its properties. For a
description of the editable properties, type:

mpcprops

To display the list of properties and their current values, type

get(MPCobj)

For the CSTR example this displays:

ManipulatedVariables (MV): [1x1 struct]
OutputVariables (OV): [1x2 struct]

DisturbanceVariables (DV): [1x1 struct]
Weights (W): [1x1 struct]

Model: [1x1 struct]
Ts: 1

Optimizer: [1x1 struct]
PredictionHorizon (P): 10

ControlHorizon: 2
History: [2e+003 7 21 20 18 20.1]

Notes: {}
UserData: []

(Your History entry will differ.) To alter one of these properties, you can
use the syntax

ObjName.PropName = value;

where ObjName is the object name, and PropName is the property you want
to set. For example, to change the prediction horizon from 10 (the default)
to 15, type:

MPCobj.P = 15;

Note You can abbreviate property names provided that the abbreviation
is unambiguous.

4-3

4 Designing Controllers Using the Command Line

As shown above, many of the properties are MATLAB structures containing
additional properties. For example, type

MPCobj.MV

which displays:

Min: -Inf
Max: Inf

MinECR: 0
MaxECR: 0

RateMin: -Inf
RateMax: Inf

RateMinECR: 0
RateMaxECR: 0

Target: 'nominal'
Name: 'T_c'

Units: ''

This shows that the default controller has no constraints on the manipulated
variable. To include constraints as shown in Entering CSTR Manipulated
Variable Constraints on page 3-29, you could type

MPCobj.MV.Min = -10;
MPCobj.MV.Max = 10;
MPCobj.MV.RateMin = -4;
MPCobj.MV.RateMax = 4;
MPCobj.MV.Units = 'Deg C';

or use the set command:

set(MPCobj, 'MV', struct('Min', -10, 'Max', 10, ...
'RateMin', -4, 'RateMax', 4, 'Units', 'Deg C'));

Note The Units property is for display purposes only and is optional.

4-4

Controller Definition

There are two outputs in this case, so MPCobj.OV is a 1-by-2 structure. To set
measurement units to the values shown in Controller Options — Weight
Tuning Tab on page 3-20, you could type

MPCobj.OV(1).Units = 'Deg C';
MPCobj.OV(2).Units = 'kmol/m^3';

Finally, check the default weights by typing

MPCobj.W

which displays:

ManipulatedVariables: 0
ManipulatedVariablesRate: 0.1000

OutputVariables: [1 1]
ECR: 100000

Change to the values shown in Controller Options — Weight Tuning Tab on
page 3-20 by typing:

MPCobj.W.ManipulatedVariablesRate = 0.3;
MPCobj.W.OutputVariables = [1 0];

You can also specify time-varying weights and constraints. The time-varying
weights and constraints are defined for the prediction horizon, which shifts at
each time step. This implies that as long as the property is not changed, the
set of time-varying parameters is the same at each time step. Type mpcprops
or see the User’s Guide for details. To learn how to specify time-varying
constraints and weights in the GUI, see “Constraints Tab” and “Weight
Tuning Tab” in the Model Predictive Control Toolbox User’s Guide.

The time-varying weights modify the tuning of the unconstrained controller
response. To specify a different weight for each step in the prediction horizon,
modify the Weightproperty. For example,

MPCobj.W.OutputVariables = [0.1 0; 0.2 0; 0.5 0; 1 0];

deemphasizes setpoint tracking errors early in the prediction horizon. The
default weight of 1 is used for the fourth step and beyond.

4-5

4 Designing Controllers Using the Command Line

Constraints can also be time varying. The time-varying constraints have a
nonlinear effect when they are active. For example,

MPCobj.MV.RateMin=[-4;-3.5;-3;-2.5]
MPCobj.MV.RateMax=[4;3.5;3;2.5]

forces MV to change more and more slowly along the prediction horizon. The
constraint of -2.5 and 2.5 is used for the fourth step and beyond.

You could also alter the controller’s disturbance rejection characteristics
using functions that parallel the design tool’s disturbance modeling options
(described in “Disturbance Modeling and Estimation” on page 3-30). See the
reference pages for the setestim, setindist, and setoutdist functions.

4-6

Linear Simulations

Linear Simulations
Model Predictive Control Toolbox functions allow you to perform linear
closed-loop and open-loop simulations. This section covers the following topics:

• “Using the sim Function” on page 4-7

• “Saving Calculated Results” on page 4-7

• “Simulation Options” on page 4-8

Using the sim Function
To run a linear simulation, use the sim function. For example, given the
MPCobj controller defined in the previous section, type:

T = 26;
r = [2 0];
sim(MPCobj, T, r);

This simulates the closed-loop response for a duration of 26 control intervals
with a setpoint of 2 for the first output (the reactor temperature) and 0 for the
second output (the residual concentration). Recall that the second output’s
tuning weight is zero (see the discussion in “Output Weights” on page 3-21),
so its setpoint is ignored.

By default, the same linear model is used for controller predictions and the
plant, i.e., there is no plant/model mismatch. You can alter this as shown
in “Simulation Options” on page 4-8.

When you use the above syntax (no output variables), sim automatically plots
the plant inputs and outputs (not shown, but see Improved Setpoint Tracking
for CSTR Temperature on page 3-21 and Plant Inputs for Modified Rate
Weight on page 3-23 for results of a similar scenario).

Saving Calculated Results
If you’d like to save simulation results in your workspace, use the following
sim function format:

[y, t, u] = sim(MPCobj, T, r);

4-7

4 Designing Controllers Using the Command Line

This suppresses automatic plotting, instead creating variables y, t, and u,
which hold the computed outputs, time, and inputs, respectively. A typical
use is to create customized plots. For example, to plot both outputs on the
same axis versus time, you could type:

plot(t, y)

Simulation Options
You can modify simulation options using the mpcsimopt function. For
example, the code

MPCopts = mpcsimopt;
MPCopts.Constraints = 'off';
sim(MPCobj, T, r, MPCopts)

runs an unconstrained simulation. Comparing to the case described in “Using
the sim Function” on page 4-7, the controller’s first move is now exceeds 4
units (the specified rate constraint).

Other options include the addition of a specified noise sequence to the
manipulated variables or measured outputs, open-loop simulations, a
look-ahead option for better setpoint tracking or measured disturbance
rejection, and plant/model mismatch.

For example, the following code defines a new plant model having gains 50%
larger than those in the CSTR model used in the controller, then repeats the
above simulation:

Plant = 1.5*CSTR;
MPCopts.Model = Plant;
sim(MPCobj, T, r, MPCopts)

In this case, the plant/model mismatch degrades controller performance, but
only slightly. Degradation can be severe and must be tested on a case-by-case
basis.

4-8

Simulations Involving Nonlinear Plants

Simulations Involving Nonlinear Plants
You can also use sim to simulate a closed-loop system consisting of a linear
plant model and an MPC controller.

If your plant is a nonlinear Simulink model, you must linearize the plant (see
“Linearization Using Simulink® Control Design” on page 2-19) and design
a controller for the linear model (see “Nonlinear Plants” on page 3-52). To
simulate the system, specify the controller in the MPC block parameterMPC
Controller field and run the closed-loop Simulink model.

Alternatively, your nonlinear model might be a MEX-file, or you might want
to include features unavailable in the MPC block, such as a custom state
estimator. The mpcmove function is the Model Predictive Control Toolbox
computational engine, and you can use it in such cases. The disadvantage is
that you must duplicate the infrastructure that the sim function and the MPC
block provide automatically.

The rest of this section covers the following topics:

• “Nonlinear CSTR Application” on page 4-9

• “Example Code for Successive Linearization” on page 4-10

• “CSTR Results and Discussion” on page 4-11

Nonlinear CSTR Application
The CSTR model described in “Using Simulink to Develop LTI Models” on
page 2-19 is a strongly nonlinear system. As shown in “Nonlinear Plants” on
page 3-52, a controller can regulate this plant, but degrades (and might even
become unstable) if the operating point changes significantly.

The objective of this example is to redefine the predictive controller at the
beginning of each control interval so that its predictive model, though linear,
represents the latest plant conditions as accurately as possible. This will be
done by linearizing the nonlinear model repeatedly, allowing the controller to
adapt as plant conditions change. See references [1] and [2] for more details
on this approach.

4-9

4 Designing Controllers Using the Command Line

Example Code for Successive Linearization
In the following code, the simulation begins at the CSTR model’s nominal
operating point (concentration = 8.57) and moves to a low concentration (= 2)
where the reaction rate is much higher. The required code is as follows:

[sys, xp] = CSTR_INOUT([],[],[],'sizes');
up = [10 298.15 298.15];
u = up(3);
tsave = []; usave = []; ysave = []; rsave = [];
Ts = 1;
t = 0;
while t < 40

yp = xp;
% Linearize the plant model at the current conditions
[a,b,c,d]=linmod('CSTR_INOUT', xp, up);
Plant = ss(a,b,c,d);
Plant.InputGroup.ManipulatedVariables = 3;
Plant.InputGroup.UnmeasuredDisturbances = [1 2];
Model.Plant = Plant;
% Set nominal conditions to the latest values
Model.Nominal.U = [0 0 u];
Model.Nominal.X = xp;
Model.Nominal.Y = yp;
dt = 0.001;
Options = simset('InitialState', xp);
[T, XP, YP] = sim('CSTR_INOUT', [t t+dt], Options, ...

[t up; t+dt up]);
Model.Nominal.DX = (1/dt)*(XP(end,:)' - xp(:));
% Define MPC Toolbox controller for the latest model
MPCobj = mpc(Model, Ts);
MPCobj.W.Output = [0 1];
% Ramp the setpoint
r = max([8.57 - 0.25*t, 2]);
% Compute the control action
if t <= 0

xd = [0; 0];
x = mpcstate(MPCobj, xp, xd, [], u);

end
u = mpcmove(MPCobj, x, yp, [0 r], []);
% Simulate the plant for one control interval

4-10

Simulations Involving Nonlinear Plants

up(3) = u;
Options = simset('InitialState', xp);
[T, XP, YP] = sim('CSTR_INOUT', [t t+Ts], Options, ...

[t up; t+Ts up]);
% Save results for plotting
tsave = [tsave; T];
ysave = [ysave; YP];
usave = [usave; up(ones(length(T),1),:)];
rsave = [rsave; r(ones(length(T),1),:)];
xp = XP(end,:)';
t = t + Ts;

end
figure(1)
plot(tsave,[ysave(:,2) rsave])
title('Residual Concentration')
figure(2)
plot(tsave,usave(:,3));
title('Coolant Temperature')

CSTR Results and Discussion
The plotted results appear below. Note the following points:

• The setpoint is being ramped from the initial concentration to the desired
final value (see the step-wise changes in the reactor concentration plot
below). The reactor concentration tracks this ramp smoothly with some
delay (see the smooth curve), and settles at the final state with negligible
overshoot. The controller works equally well (and achieves the final
concentration more rapidly) for a step-wise setpoint change, but it makes
unrealistically rapid changes in coolant temperature (not shown).

• The final steady state requires a coolant temperature of 305.20 K (see the
coolant temperature plot below). An interesting feature of this nonlinear
plant is that if one starts at the initial steady state (coolant temperature
= 298.15 K), stepping the coolant temperature to 305.20 and holding will
not achieve the desired final concentration of 2. In fact, under this simple
strategy the reactor concentration stabilizes at a final value of 7.88, far
from the desired value. A successful controller must increase the reactor
temperature until the reaction “takes off,” after which it must reduce the
coolant temperature to handle the increased heat load. The relinearization
approach provides such a controller (see following plots).

4-11

4 Designing Controllers Using the Command Line

• Function linmod relinearizes the plant as its state evolves. This function
was discussed previously in “Linearization Using Simulink Functions”
on page 2-24.

• The code also resets the linear model’s nominal conditions to the latest
values. Note, however, that the first two input signals, which are

4-12

Simulations Involving Nonlinear Plants

unmeasured disturbances in the controller design, always have nominal
zero values. As they are unmeasured, the controller cannot be informed of
the true values. A non-zero values would cause an error.

• Function mpc defines a new controller based on the relinearized plant
model. The output weight tuning ignores the temperature measurement,
focusing only on the concentration.

• At t = 0, the mpcstate function initializes the controller’s extended state
vector, x, which is an mpcstate object. Thereafter, the mpcmove function
updates it automatically using the controller’s default state estimator.
It would also be possible to use an Extended Kalman Filter (EKF) as
described in [1] and [2], in which case the EKF would reset the mpcstate
input variables at each step.

• The mpcmove function uses the latest controller definition and state, the
measured plant outputs, and the setpoints to calculate the new coolant
temperature at each step.

• The Simulink sim function simulates the nonlinear plant from the
beginning to the end of the control interval. Note that the final condition
from the previous step is being used as the initial plant state, and that the
plant inputs are being held constant during each interval.

Remember that a conventional feedback controller or a fixed Model Predictive
Control Toolbox controller tuned to operate at the initial condition would
become unstable as the plant moves to the final condition. Periodic model
updating overcomes this problem automatically and provides excellent control
under all conditions.

4-13

4 Designing Controllers Using the Command Line

Control Based On Multiple Plant Models
The “Nonlinear CSTR Application” on page 4-9 shows how updates to the
prediction model can improve MPC performance. In that case the model is
nonlinear and you can obtain frequent updates by linearization.

A more common situation is that you have several linear plant models, each
of which applies at a particular operating condition and you can design a
controller based on each linear model. If the models cover the entire operating
region and you can define a criterion by which you switch from one to another
as operating conditions change, the controller set should be able to provide
better performance than any individual controller.

The Model Predictive Control Toolbox includes a Simulink block that performs
this function. It is theMultiple MPC Controllers block. The rest of this section
is an illustrative example organized as follows:

• “A Two-Model Plant” on page 4-14

• “Designing the Two Controllers” on page 4-16

• “Simulating Controller Performance” on page 4-17

A Two-Model Plant

Note The demo Switching MPC Controllers with Multiple MPC Controllers
Block provides an animated version of the plant described below.

Animation of the Multi-Model Example on page 4-15 is a stop-action snapshot
of the subject plant. It consists of two masses, M1 and M2. A spring connects
M1 to a rigid wall and pulls it to the right. An applied force, shown as a red
arrow in Animation of the Multi-Model Example on page 4-15, opposes this
spring, pulling M1 to the left.

When the two masses are detached, as in Animation of the Multi-Model
Example on page 4-15, mass M2 is uncontrollable and responds only to the
spring pulling it to the left.

4-14

Control Based On Multiple Plant Models

If the two masses collide, however, they stick together (the collision is
completely inelastic) until a change in the applied force separates them.

The control objective is to move M1 in response to a command signal. The blue
triangle in Animation of the Multi-Model Example on page 4-15 represents
the desired location. At the instant shown, the desired location is –5.

Animation of the Multi-Model Example

In order to achieve its objective, the controller can adjust the applied force
magnitude (the length of the red arrow). It receives continuous feedback
on the M1 location. There is also a contact sensor to signal collisions. The
M2 location is unmeasured.

If M1 were isolated, this would be a routine control problem. The challenge is
that the relationship between the applied force and the M1 movement changes
dramatically when M2 attaches to M1.

The following code defines the model. First define the system parameters as
follows:

%% Model Parameters
M1=1; % mass
M2=5; % mass
k1=1; % spring constant
k2=0.1; % spring constant

4-15

4 Designing Controllers Using the Command Line

b1=0.3; % friction coefficient
b2=0.8; % friction coefficient
yeq1=10; % wall mount position
yeq2=-10; % wall mount position

Next define a model of M1 when the masses are separated. Its states are the
M1 position and velocity. Its inputs are the applied force, which will be the
controller’s manipulated variable, and a spring constant calibration signal,
which is a measured disturbance input.

A1=[0 1;-k1/M1 -b1/M1];
B1=[0 0;-1/M1 k1*yeq1/M1];
C1=[1 0];
D1=[0 0];
sys1=ss(A1,B1,C1,D1);
sys1=setmpcsignals(sys1, 'MV', 1, 'MD', 2);

The setmpcsignals command specifies the input type for the two inputs.

We need another model (with the same input/output structure) to predict
movement when the two masses are joined, as follows:

A2=[0 1;-(k1+k2)/(M1+M2) -(b1+b2)/(M1+M2)];
B2=[0 0;-1/(M1+M2) (k1*yeq1+k2*yeq2)/(M1+M2)];
C2=[1 0];
D2=[0 0];
sys2=ss(A2,B2,C2,D2);
sys2=setmpcsignals(sys2, 'MV', 1, 'MD', 2);

Designing the Two Controllers
Next we define controllers for each case. Both use a 0.2 second sampling
period, a prediction horizon of P = 20, a control horizon of M = 1, and the
default values for all other controller design parameters. The only difference
in the controllers is the prediction model.

Ts=0.2; % sampling time

p=20; % prediction horizon

m=1; % control horizon

MPC1=mpc(sys1,Ts,p,m); % Controller for M1 detached from M2 MPC2=mpc(sys2,Ts,p,m); %

Controller for M1 connected to M2

4-16

Control Based On Multiple Plant Models

The applied force also has the same constraints in each case. Its lower bound
is zero (it can’t reverse direction), and its maximum rate of change is 1000
per second (increasing or decreasing).

MPC1.MV=struct('Min',0,'RateMin',-1e3,'RateMax',1e3);
MPC2.MV=struct('Min',0,'RateMin',-1e3,'RateMax',1e3);

Simulating Controller Performance
Block Diagram of the Two-Model Example on page 4-17 shows the Simulink
block diagram for this example. The upper portion simulates the movement of
the two masses, plots the signals as a function of time, and animates the demo.

Block Diagram of the Two-Model Example

4-17

4 Designing Controllers Using the Command Line

The lower part contains three key elements:

• A pulse generator that supplies the desired M1 position (the controller
reference signal). Its output is a square wave varying between –5 and 5
with a frequency of 0.015 per second.

• A simulation of a contact sensor. When the two masses have the same
position, the Compare to Constant block evaluates to true, and the Add1
block converts this to a 2. Otherwise, the Add1 output is 1.

• The Multiple MPC Controller block. It has four inputs. The measured
output (mo), reference (ref), and measured disturbance (md) inputs are as
for a standard MPC Controller block. The distinctive feature is the switch
input.

The figure below shows the Multiple MPC Controller block mask for this
example (obtained by double clicking on the controller block).

4-18

Control Based On Multiple Plant Models

When the switch input is 1 the block automatically activates the first
controller listed (MPC1), which is appropriate when the masses are separated.
When the switch input is 2 the block automatically enables the second
controller (MPC2).

The following code simulates the controller performance

Tstop=100; % Simulation time
y1initial=0; % Initial M1 and M2 Positions
y2initial=10;
open('mpc_switching');
sim('mpc_switching',Tstop);

The figure below shows the signals scope output.

4-19

4 Designing Controllers Using the Command Line

In the upper plot, the cyan curve is the desired position. It starts at –5. The
M1 position (yellow) starts at 0 and under the control of MPC1, M1 moves
rapidly toward the desired position. M2 (magenta) starts at 10 and begins
moving in the same direction. At about t = 13 seconds, M2 collides with M1.
The switching signal (lower plot) changes at this instant from 1 to 2, so
controller MPC2 has taken over.

The collision moves M1 away from its desired position and M2 remains joined
to M1. Controller MPC2 adjusts the applied force (middle plot) so M1 quickly
returns to the desired position.

4-20

Control Based On Multiple Plant Models

When the desired position changes step-wise to 5, the two masses separate
briefly (with appropriate switching to MPC1) but for the most part move
together and settle rapidly at the desired position. The transition back to
–5 is equally well behaved.

Now suppose we force MPC2 to operate under all conditions. The figure below
shows the result. When the masses are separated, as at the start, MPC2 applies
excessive force and then over-compensates, resulting in oscillatory behavior.
Once the masses join, the movement smooths out, as would be expected.

The oscillations are especially severe in the last transition. The masses collide
frequently and M1 never reaches the desired position.

If we put MPC1 in charge exclusively, we instead see sluggish movements that
fail to settle at the desired position before the next transition occurs. (not
shown but you can run the mpcswitching demo).

In this case, at least, two controllers are better than one.

4-21

4 Designing Controllers Using the Command Line

Analysis Tools
The are many ways to analyze a controller design. This section highlights
two functions that support analysis of Model Predictive Control Toolbox
controllers:

• “Steady-State Gain Computation” on page 4-22

• “Controller Extraction” on page 4-23

Steady-State Gain Computation
The cloffset function computes the closed-loop, steady-state gain for each
output when subjected to a sustained, 1-unit disturbance added to each
output. It assumes that no constraints will be encountered.

For example, consider the controller operating at the final steady-state of the
nonlinear CSTR of the previous section. To compute its gain, type

cloffset(MPCobj)

which gives the result:

ans =

1.0000 14.5910
-0.0000 -0.0000

The interpretation is that the controller doesn’t react to a sustained
disturbance of 1 unit in the first output (the reactor temperature). Recall
that we assigned zero weight to this output in the controller design, so the
controller ignores deviations from its setpoint. The same disturbance has no
effect on the second output (the 2,1 element is zero).

If there is a 1-unit disturbance in the second output, the controller reacts, and
the first output increases 14.59 units. This is again due to the zero weight on
this output. The second output stays at its setpoint (the 2,2 element is zero).

4-22

Analysis Tools

Controller Extraction
Use the ss function to obtain an LTI representation of an unconstrained
Model Predictive Control Toolbox controller. You can use this to analyze the
controller’s closed-loop frequency response, etc.

For example, consider the controller designed in “Creating a Controller
Object” on page 4-2. To extract the controller, you could type:

MPCss = ss(MPCobj);

You could then construct an LTI model of the closed-loop system using the
feedback function (see the Control System Toolbox documentation for details)
by typing:

CSTRd = c2d(CSTR, MPCss.Ts);
Feedin = 1;
Feedout = 1;
Sign = 1;
CLsys = feedback(CSTRd, MPCss, Feedin, Feedout, Sign);

Note The CSTR model must be converted to discrete form with the same
control interval as the controller.

Recall that the CSTR plant has two inputs and two outputs. The first input is
the manipulated variable and the other is an unmeasured disturbance. The
first output is measured for feedback and the other is not. The Feedin and
Feedout parameters specify the input and output to be used for control. The
Sign parameter signifies that the MPC object uses positive feedback, i.e., the
measured outputs enter the controller with no sign change. Omission of this
would cause the feedback command to use negative feedback by default and
would almost certainly lead to an unstable closed-loop system.

You could then type

eig(CLsys)

to verify that all closed-loop poles are within the unit circle, or

4-23

4 Designing Controllers Using the Command Line

bode(CLsys)

to compute a closed-loop Bode plot.

4-24

Bibliography

Bibliography
[1] Lee, J. H. and N. L. Ricker, “Extended Kalman Filter Based Nonlinear
Model Predictive Control,” Ind. Eng. Chem. Res., Vol. 33, No. 6, pp.
1530–1541 (1994).

[2] Ricker, N. L., and J. H. Lee “Nonlinear Model Predictive Control of the
Tennessee Eastman Challenge Process,” Computers & Chemical Engineering,
Vol. 19, No. 9, pp. 961–981 (1995).

4-25

4 Designing Controllers Using the Command Line

4-26

Index

IndexB
blocking 3-25

C
cloffset function 4-22
closed-loop

design tool simulations 3-14
constraints

input 3-28
manipulated variable 3-28
output 3-38
softening 3-38

Control and Estimation Tools Manager 3-2
control horizon

control specification 3-18
control interval

control specification 3-18
controller settings

delay compensation 3-46
disturbance estimation 3-30
get function 4-3
input constraints 3-28
input weights 3-24
move suppression 3-22
output weights 3-21
prediction horizon 3-18
rate weights 3-22
set function 4-3
weights 3-19

controllers
comparisons 3-25
creation 4-2
design tool 3-18
design tool list 3-7
exporting 3-64
LTI object extraction 4-23
mpc function 4-2
property settings 4-3
robustness 3-42

CSTR (Continuous Stirred-Tank Reactor)
linear model 2-5
nonlinear model 2-20

D
delays

controller settings for 3-46
description

signal specification 3-5
design tool 3-6

loading models 3-3
navigation in tree view 3-6
starting 3-2
See also views

direct feedthrough 2-7
disturbance estimation 3-30
disturbances

specification in simulations 3-14
documentation 1-4

E
estimation

disturbances 3-30

G
gain

closed-loop 4-22

H
horizons

specification 3-18

I
import

plant model 3-4
importing

Index-1

Index

controller 3-67
InputGroup property 2-7
InputName property 2-9
inputs

manipulated variables 2-3
measured disturbances 2-3
names 2-9
noise 2-17
nominal value 3-5
type specification 2-9
types 2-3
unmeasured disturbances 2-3

L
linearization

operating point 2-21
repeated 4-10
Simulink Control Design 2-19
Simulink functions 2-24

linmod function 2-24
loading

controllers 3-67
project 3-67

LTI objects
properties 2-7

M
manipulated variables

definition 2-3
measured disturbances

definition 2-3
measured outputs

definition 2-3
Model Predictive Control (MPC)

related products 1-5
models 2-15

characteristics 2-13
delays 3-45

design tool list 3-6
disturbances 3-30
linearization 2-19
loading into design tool 3-3
LTI 2-4
LTI chemical reactor 2-5
noise inputs 2-17
nonlinear 2-19
nonlinear CSTR example 3-52
nonlinear simulation 4-9
nonsquare 3-50
perturbation 3-42
plant 2-2
prediction error 3-42
relinearizing 3-58
state-space 2-5
step response 2-17
system identification 2-14
transfer function 2-4
zero/pole/gain 2-5
See also system identification

mpc objects
conversion to state-space 4-23
creating 4-2

mpcmove function 4-10
mpcstate objects 4-11
MV (manipulated variables). See manipulated

variables

N
names

specification using design tool 3-5
nonlinear plants 3-52
nonsquare plants 3-50

O
objects

LTI 2-7

Index-2

Index

mpc 4-2
mpc conversion to ss 4-23
mpcstate 4-11

open-loop
design tool simulations 3-14

operating point
new 2-21
specification 2-21

OutputGroup property 2-7
OutputName property 2-9
outputs

measured 2-3
names 2-9
nominal value 3-5
setpoint definition 3-10
type specification 2-9
types 2-3
unmeasured 2-3

P
plant/model mismatch 3-42
plants

input/output signals 2-3
MIMO plant 2-11
nonlinear 3-52
nonlinear simulation 4-9
nonsquare plant 3-50

properties
mpc object 4-3

R
response plots

data markers 3-11
robustness

controller prediction error 3-42
testing 3-42

S
saving

controllers 3-64
projects 3-65

scenarios
design tool list 3-9
specification 3-10

setpoints
specification 3-10

signal labels
description 3-5
name 3-5
units 3-5

signals
inputs 2-3
outputs 2-3

sim function
options 4-8
simulations 4-7

simulations 3-9
closed-loop 3-14
conditions 3-10
linear 3-10
nonlinear 3-61
open loop 3-14
options 4-8
sim function 4-7
starting in design tool 3-11
toolbar icon 3-11
See also scenarios

soft constraints 3-38
ss function 2-6
SysID (System Identification). See system

identification
system identification

example 2-14
model conversion 2-15
noise inputs 2-17
step response 2-17

Index-3

Index

T
tf function 2-4
transfer functions

specification 2-4
tree

navigation 3-6
types

specification using design tool 3-5

U
unmeasured outputs

definition 2-3

V
views 3-5

constraint softening 3-39

controller settings 3-18
controllers 3-7
plant models 3-6
scenarios 3-9
signal properties 3-6
See also design tool

W
weights

move suppression 3-22
output 3-21
rate 3-22
setpoint tracking 3-21

Z
zpk function 2-5

Index-4

	toc
	Introduction
	Product Overview
	Using the Documentation
	Related Products

	Bibliography

	Building Models
	Overview
	Plant Model
	Plant Inputs and Outputs
	Inputs
	Outputs

	Linear, Time Invariant (LTI) Models
	Transfer Function Format
	Zero/Pole/Gain Format
	State-Space Format
	Chemical Reactor Example
	State-Space Format

	LTI Object Properties
	LTI Properties for the CSTR Example
	Input and Output Names
	Input and Output Types

	Multiinput-Multioutput (MIMO) Plants
	LTI Model Characteristics

	System Identification Toolbox Models
	System Identification Model Definition Example
	Converting a System Identification Toolbox Model to an LTI Objec
	Creating an LTI State-Space Model
	Noise Inputs

	Step-Response Models

	Using Simulink to Develop LTI Models
	Linearization Using Simulink Control Design
	Linearization at a Specified Operating Point
	Determining a New Operating Point

	Linearization Using Simulink Functions

	Bibliography

	Designing Controllers Using the Design Tool GUI
	Introduction
	Starting the Design Tool
	Loading a Plant Model
	Plant Model Importer Dialog Box
	Signal Property Specifications

	Navigation Using the Tree View
	Project View (Signal Properties Tables)
	Listing Your Plant Models
	Viewing Your Controllers
	Viewing Simulation Scenarios

	Linear Simulations
	Defining Simulation Conditions
	Running a Simulation
	Open-Loop Simulations

	Changing Controller Settings
	Model and Horizons
	Weight Tuning
	Output Weights
	Rate Weights
	Input Weights

	Blocking
	Defining Manipulated Variable Constraints
	Disturbance Modeling and Estimation

	Defining Soft Output Constraints
	Robustness Testing
	Plant Model Perturbation
	Simulation Tests

	Plant Models with Delays
	Importing the Plant Model
	Specifying Controller Horizons

	Nonsquare Plants
	More Outputs Than Manipulated Variables
	More Manipulated Variables Than Outputs

	Nonlinear Plants
	MPC Controller Block
	Initiating the Controller Design
	Validating the Linearized Model
	Modifying the Linearized Model
	Linear Simulation Tests
	Nonlinear Simulation Tests
	Modifying the Controller Using the Design Tool
	Exiting the Design Tool

	Saving Your Work
	Exporting a Controller
	Saving a Project

	Loading Your Saved Work

	Designing Controllers Using the Command Line
	Controller Definition
	Creating a Controller Object
	Viewing and Altering Controller Properties

	Linear Simulations
	Using the sim Function
	Saving Calculated Results
	Simulation Options

	Simulations Involving Nonlinear Plants
	Nonlinear CSTR Application
	Example Code for Successive Linearization
	CSTR Results and Discussion

	Control Based On Multiple Plant Models
	A Two-Model Plant
	Designing the Two Controllers
	Simulating Controller Performance

	Analysis Tools
	Steady-State Gain Computation
	Controller Extraction

	Bibliography

	Index

